

Clara Hollomey, Roberto Barumerli, Piotr Majdak

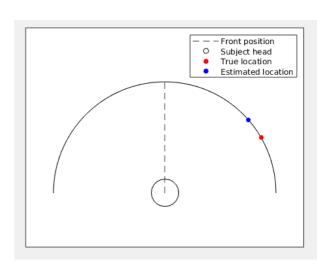
Workshop tasks

Idea

By means of a simple localization model, we would like you to:

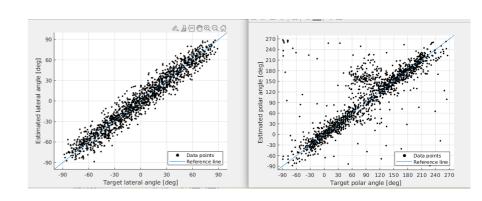
- 1) Learn how to use AMT's functionalities supporting your ideas.
- 2) Integrate your experiments within the AMT.
- 3) Publish your model within the AMT.

Tips


- Use the documentation
 - Each function is explained and examples are usually available
 - The documentation is available online and within each file
- Check code from other models and their demos
 - baumgartner2014, barumerli2021, dietz2011
 - demo_<modelname>
- Last but not least: ask for help:)

Task 1

- AIM: start to have an idea around AMT functions and their parameters
- Task: create a sound localization model for the estimation of the angle of the sound source.
 - Use third-party functions to load HRTF
 - hrtf = SOFAload(fullfile(SOFAdbPath, 'barumerli2021/dtf_nh12.sofa'));
 - Use core functions to load binaural sample
 - [soundtemp, fs] = sig_competingtalkers('one_of_three');
 - Use common functions to estimate angle (i.e. auditory model)
 - itdestimator, itd2angle_lookuptable and itd2angle
 - Use these parameters for itdestimator
 - 'MaxIACCe', 'lp', 'upper_cutfreq', 3000, 'fs', fs
- Done when:
 - Angle estimated is about -30deg


Task 2

- AIM: understand how to use the AMT to wrap your experiments with an actual model
- Task: implement a localization experiment inside the AMT
 - One file exp_workshop<surname>2022 with one experiment named 'fig1'
 - Use amt cache to cache your results
 - Use Itfatarghelper to parse your input parameters
 - definput.flags.type = {'missingflag', 'fig1'}
 - if flags.do_fig1
 - Cache this results
 - Load subject data from data_majdak2010 with id NH12
 - For on subject
 - Load HRTF dataset from ARI database (as in Task 1)
 - Use barumerli2021 to estimate the direction of arrival for each position.
 - Use common/localizationerror.m to estimate the RMS lateral error, and RMS polar error and the quadrant error.
 - Plot two scatter plots:
 one for the lateral and one for the polar dimensions
 - Commit experiment on your branch
- Done when:
 - Experiment returns plots and metrics when calling exp_workshop<surname>2022('fig1')
 - Documentation is added

```
>> exp_workshoppartecipant2022('fig1')
Real data
rmsL 8.35
rmsP 27.29
querr 2.92

Simulated data
rmsL 10.50
rmsP 26.67
querr 4.28

$\sim_{>>}$
```


Task 3

- Develop your model in the AMT
- AIM: understand more deeply how the AMT is organized and how it can help you developing your model
- Task
 - Switch to branch workshop
 - Files
 - ./defaults/arg_template.m
 - ./demos/demo_template.m
 - ./experiments/exp_template.m
 - ./models/template.m
 - ./modelstages/template_stage.m
 - ./plot/plot template.m
 - Each file needs to be documented
 - Add an experiment as 'fig2' to the file created in the previous task
 - Provide an experiment which tests the following ITD measures:
 - 'Threshold','Cen_e2','MaxIACCr', 'MaxIACCe', 'CenIACCr','CenIACCe', 'CenIACC2e'
 - Write a demo to call your experiments and show how the model should be used