The MAT2DOC documentation system

Peter L. Sgndergaard
July 17, 2014

1 About mat2doc

MAT2DOC is a system made for extracting documenation from the Matlab function headers. You
write the documentation in a Wiki-like syntax, and the system produces output for three different
output formats:

e Plain text with simple rendered formulas and no images
e HTML / php with javascript formulas and images

e Latex for processing with pdflatex

e Git or Subversion for managing the source code

The software is written in Python as a wrapper around reStructuredText, and it can therefore
handle all the markup possible in reStructuredText, with a few extra shortcuts suitable for writ-
ing documenation.The easiest way of getting started is to look at the source code for LTFAT or
AMTOOLBOX for a lot of examples.

The restructured-text markup language is explained with a lot of examples on the homepage
of the project http://docutils.sourceforge.net /rst.html.

Cyrrently, the system runs only on Linux. No official release has been made yet, but we are
working on it.

2 The markup language

Read this section to learn about how to write the headers of function files and demos.

2.1 Code and variables

Code and variables are typeset by changing the font

e Code in always surrounded by backticks as in ‘c=dgt(...)* and is typeset in a typewriter font:
c=dgt(...) The backtics is simply the “default role” in reStructuredText that has been
assigned to this.

e Single variables appearing in the text should be surrounded by stars as in *siglen® and is
typeset in italics siglen

e If you have code in a separate environment spanning one or more lines, close the previous
environment by two colons :: . This is standard reStructruredText, so see the documenation
for examples.

e If you have example code that should be executed, do as above but end with three (3) colons
2 . You can have multiple example blocks this way, but they are evaluated independently,
so variables etc. cannot be shared. You can generate plot in the code, they will captured as
images and out into the documenation.

2.2 Math

Formulas are typeset using MathJax which is an open source javascript system, http://www.mathjax.org/,
that converts Latex mathematics markup into MathML. MAT2DOC supports typesetting either sin-
gle inline formulas or display math:

e Simple inline formulas $1°2$ or $M\ times N§ becomes [? or M x N. This is a simple extension
of reStructuredText, so that you don’t have to write :math:‘1°2‘ all the time, but can use the
familiar TEX construct.

e Display math formulas are typeset as a separate environment, opening with .. math::
This is standard reStructured Text.

The inline formulas must be very simple, as it must be able to convert them to a simple ascii
representation for the plain text output.

The display math formulas can contain any standard latex math markup, but they will not
appear in the plain text output. Instead it is possible to create a restructured text comment
starting by two full stops and a space. The comment will appear in the plain text output, but
nowhere else, so you can manually render the formula in ascii.

2.3 Links
Links to other functions are written between pipe symbols with a final underscore: See the help
on |dgt|_. This is a standard restructured text substitution, but MAT2DOC will generate the

correct substitutions. Note that you can only link to functions in your own toolbox in this way, as
MAT2DOC would not know where to link. It is possible to supply a list of substitutions, see Section
XXX configuration.

Normal HTML links are written as: ‘<http://dsp.rice.edu/software/bat-echolocation-chirp>*_

2.4 Itemize and enumerate

You can create itemize and enumerate environments:
e * gives you an “itemize” section
e 1) gives you an “enumerate” section

Environments can be nested by adding spaces in front. Note the correct spacing;:

1) This is an enumerate item spanning severeal line. Note
that the second line must be indented relative to the first
one, otherwise you will get an error.

* Itemize paragraphs simply start with a single star, and
continue in the same way as the enumeration paragraphs.

2.5 Headlines

Headlines are created by underlining:

Headline 1:

It is possible to create many types of headlines by using different types of underlining, but
it is recommended to stick to only using —-, as one level of headlines should suffice for simple
documentation. MAT2DOC will automatically generate some headlines using —-, so if you use
another characther you will break the system.

2.6 Lists
Usage lists are written as follows:

% Usage: c=dgt(f,g,a,M);
% c=dgt (f,g,a,M,L);
yA c=dgt (f,g,a,M,’1t’,1t);

they must follow straight after the function definition.
Input parameter lists always start with the exact headline: “Input parameters:” as in

% Input parameters:
h £ : Input data.
yA g : Window function.

Similarly for output parameters

% Output parameters:
yA c : $M \times N$ array of coefficients.
yA Ls : Length of input signal.

The right hand side of the parameter definitions are full reStructuredText blocks, so you can put
in markup code and empty lines to create blocks.

There is special support for optional parameter list in the ltfatarghelper style, see Section [
They are written like this:

yA ’dynrange’,r This is a key/value pair.

h

h ’db’ This is a flag definition. The description may

yA span multiple lines, and may include markup like $1°2$.

Some important details:
e There are 5 spaces between the percent sign and starting description of the parameters
e Each parameter starts with an apostrophe ’
e For key/value pairs, you can add the variable after the flag

e There must be at least two spaces between the parameter name and the start of the descrip-
tion (so in the above example between “’dynrange’,r” and “This is a key ...”).

2.7 Stuff at the end

You can add references to the end of you function by writing the key to the reference as in the
following:

% References: griffin1984sem fest98

This will expand the citations as text in the Matlab function file, as HTML code in the HTML
output and as a regular citation in the Latex output. The keys are looked up in the bibtex file of
you project, see the configuration section XXX.

If a line opens by see also:, the “see also” items will be converted into links to the relevant
functions:

% See also: dgt, dgtreal
If you have many see also items, it is possible for them to span multiple lines as in:

See also: takanen2013periphery, takanen2013mso,
takanen20131lso, takanen2013wbmso,
takanen2013directionmapping

Complete similar to “See also” it is possible to specify demos by a line opening with the word
“Demos:”

2.8 A complete example

This section describes the overall structure and gives a complete example of a function. It is a
reduced version of the dgt

01 function [c,Ls,gl=dgt(f,g,a,M,varargin)
02 %DGT Discrete Gabor transform
03 % Usage: c=dgt(f,g,a,M);

04 % c=dgt(f,g,a,M,L);

06 %

07 % Input parameters:

08 7% f : Input data.

09 % g : Window function.

10 % Output parameters:

11 % c : $M \times N$ array of coefficients.
12 % Ls : Length of input signal.

13 %

14 % ‘dgt(f,g,a,M) ¢ computes the Gabor coefficients of the input signal
15 % *f* with respect to the window *g* and parameters *a* and *Mx. The
16 % output is a vector/matrix in a rectangular layout.

17 %

18 % If *xf* is a matrix, the transformation is applied to each

19 % column. The length of the transform done can be obtained by

20 % ‘L=size(c,2)*a;°‘

21 %

22 J, The window *g* may be a vector of numerical values, a text string
23 /i or a cell array. See the help of |gabwin|_ for more details.

24 7,

25 % ‘dgt(f,g,a,M,L) ¢ computes the Gabor coefficients as above, but does
26 % a transform of length *L*. f will be cut or zero-extended to length
27 % *L*x before the transform is done.

28 %

29 % “[c,Ls]=dgt(f,g,a,M) ¢ or ‘[c,Ls]=dgt(f,g,a,M,L)¢ additionally

30 % returns the length of the input signal *f*. This is handy for

31 /i recomstruction::

32 %
33 % [c,Ls]l=dgt(f,g,a,M);
34 9 fr=idgt(c,gd,a,Ls);
35 %

36 % will reconstruct the signal *f* no matter what the length of *fx is,
37 % provided that *gd* is a dual window of *gx.

38 %

39 /i The Discrete Gabor Transform is defined as follows: Consider a

40 % window *g* and a one-dimensional signal *f* of length *L* and

41 % define $N=L/a$. The output from ‘c=dgt(f,g,a,M)‘ is then given by:

42 %

43 % .. L-1

44 Y, c(m+1,n+1) = sum f(1+1)*conj(g(l-a*n+1))*exp(-2*pi*i*m*1/M),
45 % 1=0

46 %

47 % .. math:: c\left(m+l,n+1\right) =

48 % \sum_{1=0}"{L-1}f(1+1)\overline{g(l-an+1)}e~{-2\pi ilm/M}
49 %

50 % where $m=0,\ldots,M-1$ and $n=0,\ldots,N-1$ and $1-an$ is computed
51 % modulo *Lx.

52 %

53 % Additional parameters:

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

‘dgt‘ takes the following flags at the end of the line of input
arguments:

’freqinv’ Compute a DGT using a frequency-invariant phase. This
is the default convention described above.

’timeinv’ Compute a DGT using a time-invariant phase. This
convention is typically used in filter bank algorithms.

In the following example we create a Hermite function, which is a
complex-valued function with a circular spectrogram, and visualize
the coefficients using both ‘imagesc‘ and |plotdgt|_:::

a=10;

M=40;

L=axM;

h=pherm(L,4); % 4th order hermite function.
c=dgt(h,’gauss’,a,M);

% Simple plot: The squared modulus of the coefficients on
% a linear scale
figure(1);
imagesc(abs(c)."2);
See also: idgt, gabwin, dwilt, gabdual, phaselock

Demos: demo_dgt

References: fest98 gro1

A description of the lines:

01

02

03-04

07-12
14-16

18-20
23

25-31

This is the function header, it must always be the first line, otherwise the function will
be treated as an executable demo

The header of the help section. It must start with the name of the function in capital
letters followed by a one-line description of the function. The description must not be
too long, as it will be used for headlines in the html and tex output.

The usage section
Input and output parameters

The first real description of the function, telling the user what the function does for
its most common set of parameters. Each parameter is desribed shortly. The function
and its parameters appear first on the line surrounded by backticks. Notice that the
free variables are surrounded by stars.

Another paragraph in the description. Notice the inline code on line 20

This is a link to another function, it will be uppercase in Matlab and links will be
generated in the other targets.

These paragraphs describes less common ways of calling the function by referring to
the previous paragraph.

33-34 This is inactive code, it is places here to explain something to the user, but the code
itself cannot be executed as such. Notice how the previous paragraph is closed by two
colons in line 31 to mark the code block.

43-45 This is a reStructuredTex comment. The text one these lines will only appear in the
Matlab output. This is done here to manually render the formula below.

47-48 This is the definition of a display math formula. It will appear in the HTML and tex
output.

53-54 This is a headline, notice the correct underlining.

59-63 This is description of optional input parameters. Notice the 5 spaces before the pa-

rameters and the 2 spaces in between the label and the description.

72-81 This is an active code block. Notice the three colons finishing line 70 to mark the
beginning. This code block will generate a figure that will be captured for the HTML
and tex output.

83 The “See also” line
85 The “Demos” line
87 The “References” line. This is the recommended ordering of the three lines.

2.9 demos

A demo is simple a script file, not starting with the “function” command. Demos are executed by
mat2doc, and the figures are output are saved, just as for examples in the help section. The major
difference is that captions for generated images are written as in the following example:

01 DEMO_AUDSCALES Plot of the different auditory scales

02 7%

03 % This demos generates a simple figure that shows the behaviour of

04 % the different audiory scales in the frequency range from 0 to 8000 Hz.

05 %

06 % .. figure::

o7 %

08 % Auditory scales

09 %

10 % The figure shows the behaviour of the audiory scales on a normalized
11 % frequency plot.

12 %

13 % See also: freqtoaud, audtofreq, audspace, audspacebw

The opening line (01) is completely similar to the opening of a function, but there are no “Us-
age”, “Input Parameters” or “Output Parameters” sections. Lines 06-11 describes the first figure
generated by the demo. The structure for a figure is always as follows:

1. The line “.. figure::” (line 06) marking the beginning of the figure definition. It must be
followed by an empty line

2. A single line (line 08) providing the caption for the figure. It must be followed by an empty
line

3. Regular text, perhaps including several paragraphs that describe the figure.

This is a simple wrapper around the restructuredtext “Figure “ directive: http://docutils.sourceforge.net/docs/ref/rst/c
MAT2DOC simply inserts the correct file name and properties after the first line.

3 Setting up mat2doc

Read this section if you want to set up MAT2DOC for your own project.

3.1 Installation

You will need the following programs
e Python 2.7 with the following modules: docutils and pygments
e Lynx
e Bibtex2html

e Octave or Matlab

3.2 Configuration

Configuration is done inside a mat2doc directory in you package, so if you package is stored in
/path/to/mypackage, then all the cofiguration is stored in /path/to/mypackage/mat2doc

The main configuration file is called “conf.py”. This is parsed as a regular Python file, and you
can set variables for your whole project. The current supported variables are:

3.2.1 Mandatory parameters
outputdir This is the directory where the output mat/php/tex output will be stored.

plotengine Which program to use for plotting, values are either matlab’ or ’octave’.
version Version number of your package as a string.

versionfile Name of a file that contains the version number as a string. You must specify either
’version’ or ’versionfile’.

3.2.2 Optional parameters

author Name of the author.

year The year (as a string)

octtitle The first line of text for the Octave package INDEX file
matlabexec Full path and name of the Matlab executable
lynxexec Full path and name of the Matlab executable

lynxdir Directory containing the lynx.cfg configuration file
octaveexec Full path and name of the Matlab executable
bibtex2htmlexec Full path and name of the Matlab executable
gitexec Full path and name of the Git executable

svnexec Full path and name of the Subversion executable

3.3 Running mat2doc

mat2doc is a executable Python file, so on Linux/Unix you can set the executable permissions and
run it directly, as in

mat2doc.py /path/to/mypackage mat
but on Windows you will need to first call python as in
python mat2doc.py /path/to/mypackage mat

The first argument of mat2doc is the full directory path to you package (you can use ~ on Linux).
The second argument is the target to generate:

mat Generate the .m files. This creates a directory with the files that the user should
download

php Generate php files

html Generate plain html files

tex Generate Latex files

The output will be placed in a subdirectory of the output directory specified in the main conf.py
file, so the “mat” output can be found in /path/to/outputdir/packagename-mat and similarly
for the other targets.

4 The ltfatarghelper function

Many functions needs optional parameters, and Matlab does not have a decisive system for speci-
fying default values. 1ltfatarghelper is a homegrown system for parsing varargin. It is simply
one function bundled with LTFAT. It supports:

e Key / value pair

e flags organized in groups

Positional key / value pairs

e Expansion of a single flag into a default parameter line

Inheriting definitions from other functions

Here is a simple example on how to use ltfatarghelper.In the header of the function that uses
ltfatarghelper, put the varargin at the end:

function [c,Ls,gl=dgt(f,g,a,M,varargin)
In the function, before doing anything else, put the following:

definput.keyvals.L=[];

definput.keyvals.1lt=[0 1];
definput.flags.phase={’freqinv’,’timeinv’};
[flags,kv,L]=1tfatarghelper({’L’},definput,varargin);

This defines
1. A key/value pair L with having the empty matrix as the default value.
2. A key/value pair [t having a 1x2 matrix as the default value

3. Two mutually exclusive flags freqinv’ and ’timeinv’. If no flag is specified, the first one is
assumed, in this case ’freqinv’

The last line call 1tfatarghelper to parse the input line with the additional specification that L
may be entered first in the line of optional parameters as an optional parameter.
These are some of the possibilities that the user can write

e dgt(f,g,a,M,L)
e dgt(f,g,a,M,L, ’timeinv’)
e dgt(f,g,a,M,’timeinv’)
e dgt(f,g,a,M,’1t’,[1 2])
After the call you can refer to these variables in your code
o L
e kv.L

e kv.l1lt

flags.do_freqinv

flags.do_timeinv

	About mat2doc
	The markup language
	Code and variables
	Math
	Links
	Itemize and enumerate
	Headlines
	Lists
	Stuff at the end
	A complete example
	demos

	Setting up mat2doc
	Installation
	Configuration
	Mandatory parameters
	Optional parameters

	Running mat2doc

	The ltfatarghelper function

