
AMT 1.x: A toolbox for reproducible research in auditory modeling
Piotr Majdak* , Clara Hollomey, and Robert Baumgartner

Austrian Academy of Sciences, Acoustics Research Institute, Vienna, Austria

Received 31 May 2021, Accepted 18 March 2022

Abstract – The Auditory Modeling Toolbox (AMT) is a MATLAB/Octave toolbox for the development and
application of computational auditory models with a particular focus on binaural hearing. The AMT aims for a
consistent implementation of auditory models, well-structured in-code documentation, and inclusion of
auditory data required to run the models. The motivation is to provide a toolbox able to reproduce the model
predictions and allowing students and researchers to work with and to advance existing models. In the AMT,
model implementations can be evaluated in two stages: by running so-called demonstrations, which are quick
presentations of a model, and by starting so-called experiments aimed at reproducing results from the corre-
sponding publications. Here, we describe the tools and mechanisms available within the framework of all
AMT 1.x versions. The recently released AMT 1.1 includes over 60 models and is freely available as an
open-source package from https://www.amtoolbox.org.

1 Introduction

Our understanding of the world relies on observations.
These observations drive the development of models and
models explain the world [1]. In the domain of hearing
research, auditory models are informative representations
of processes describing the hearing system. Auditory models
of conceptual nature qualitatively describe behavioral or
neural outcomes. Computational models usually build upon
such conceptual models and consist of algorithms designed
to numerically process sound stimuli and to output a mea-
surable quantitative metric [2]. Computational models form
a powerful tool to formalize hypotheses, generate testable
predictions, reproduce results, and confirm conclusions [3].
In this article, we describe the Auditory Modeling Toolbox
(AMT), which is a framework for computational models of
the human hearing system emphasizing reproducible
research.

The motivation for the development of auditory models
is widely spread across different domains and applications.
Auditory models can help to evaluate how a deficit in one
or more parts of the hearing system affects its overall oper-
ation. They can help to prototype novel hearing-related
algorithms in early prototyping stages, effectively reducing
the amount of listening tests. By doing so, they facilitate
advances in technical applications, such as the improve-
ment of human-machine communication, as well as in clin-
ical applications, such as the development of new processing
strategies in hearing-assistive devices. An important
property of auditory models is to represent results from

an auditory experiment in order to explain the functioning
of the targeted part of the auditory system. To this end,
new auditory models are based on already existing ones,
and the development of an auditory model begins with
the process of comprehending and reproducing results of
previously published models [4]. In some cases, such a fam-
ily tree is clearly evident. For example, building upon a
peripheral model for the processing of amplitude modula-
tion [5], a model characterizing the frequency selectivity
for envelope fluctuations has been developed [6], which then
led to the development of an envelope-power based model
for speech intelligibility [7].

Unfortunately, when a new model is published in the
usual form of a journal article, the model description and
the discussion about its properties are often not sufficient
to reproduce the results. In addition, publishing the corre-
sponding model implementation, i.e., a computer-readable
sequence of commands to be executed, is required to ensure
direct reproducibility. Thus, it is not surprising that articles
describing computational algorithms have sometimes
been described as “advertisement of scholarship” [8] whereas
the scholarship itself is then represented by computer-
executable code, input data, and parameters [9]. Hence,
the spectrum of reproducibility is wide [10] – model imple-
mentations linked with the corresponding publication and
data are vital prerequisites for a full replication of the
research [11]. The AMT directly addresses the full research
replication by providing executable code and data, both
linked to an extensive documentation referencing the
corresponding publications (see Sect. 5.2). Further, the
AMT facilitates publishing of researchers’ models combined
with the implementation, improving their chances of gener-
ating impact within the community (see Sect. 5.4).*Corresponding author: piotr.majdak@oeaw.ac.at

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acta Acustica 2022, 6, 19

Available online at:

�The Author(s), Published by EDP Sciences, 2022

https://acta-acustica.edpsciences.org

https://doi.org/10.1051/aacus/2022011

Topical Issue - Auditory models: from binaural processing to multimodal cognition

TECHNICAL & APPLIED ARTICLE

https://orcid.org/0000-0003-1511-6164
https://orcid.org/0000-0003-1511-6164
https://orcid.org/0000-0003-1511-6164
https://orcid.org/0000-0003-0899-4903
https://orcid.org/0000-0003-0899-4903
https://orcid.org/0000-0003-0899-4903
https://www.amtoolbox.org
https://creativecommons.org/licenses/by/4.0/
https://www.edpsciences.org/
https://actacustica.edpsciences.org
https://actacustica.edpsciences.org
https://doi.org/10.1051/aacus/2022011


Computational models of auditory processes can focus
on various levels of details. For example, there are physio-
logical models based on the description of cochlear mechan-
ics or neural firing mechanisms. On the other end of the
spectrum, there are phenomenological (or functional)
models which describe an input–output relation by a
high-level function without a strict relation to the underly-
ing biological structures. Most computational auditory
models follow a common functional structure in line with
the ascending auditory pathway, which is reflected in the
AMT in the way shown in Figure 1: The sound entering
and filtered by the outer ear is transmitted by the middle
ear, frequency-decoded in the cochlea, neurally encoded
by the hair cells, transmitted via auditory nerves, and
monaurally processed in the first nuclei of the brainstem.
The monaural output of those nuclei is combined with that
coming from the other ear (Binaural in Fig. 1). All three
representations, from the left ear, the right ear, and the
binaural stage are further processed in higher-level stages
dealing with the modeling of perception and behavior. In
the AMT, various types of models deal with various types
of percepts such as loudness, speech, or space.

There are many auditory models with publicly available
implementations. For example, ModelDB, one of the data-
bases listing computational neuroscience models [12], lists
65 implementations for the search word “auditory”. While
model sharing is common in the neuroscience community
[13], most of the implementations focus on specific proper-
ties or stages of the auditory system, such as modeling
the frequency selectivity in cochlear processing [14] or brain-
stem activities [15]1, respectively. Other types of implemen-
tations simulate multiple parts of the auditory pathway
such as processing up to the auditory nerve [16]2, [17]3,
auditory-cortical processing [18]4, or everything relevant
to a specific percept such as loudness [19]5.

In contrast, the AMT is a collection of auditory mod-
els. In contrast to a database, it provides executable

implementations of the models in a single software package.
It is implemented within the environment of MATLAB [20]
and Octave [21]. Besides the AMT, there are also other
publicly available auditory model collections. The Auditory
Toolbox is one of the earliest freely available collections and
includes three cochlear models [22]. It is written for
MATLAB, but the development seems to have stopped in
1993. AIM [23] is a collection of models aiming to describe
the formation of auditory events along the auditory path-
way. Its development started in 1995 and the maintenance
lasted until 2011 for the offline version and until 2013 for
the real-time version. Other notable but stagnated collec-
tions of auditory models are HUTear [24] (developed until
2000), SOMA (until 2011)6, EarLab [25] (until 2016),
and Cochlea [26] (until 2017). Development System for
Auditory Modelling (DSAM) is a potentially still main-
tained model collection that includes multiple auditory
nerve models, neural cell models, and utilities [27]. While
the main development happened before 2013, some activi-
ties on re-writing the code to C++ have been restarted in
20207. Brian Hears, a collection of cochlear models [28],
was developed until 2011 and has been recently upgraded
to Brian2Hears and ported to be based on Brian2, an
open-source simulator for spiking neural networks being
under active development [29]. At its current development,
Brian2Hears includes auditory models developed with a
focus on computational efficiency8. Most of the auditory
models from all those collections are also available in the
AMT, which is under long-term active development and
aims at being a one-stop shop for auditory models within
multiple programming environments (see Sect. 3.2) and
offered under multiple licenses (see Sect. 5.3).

Besides these general collections, there are also collec-
tions of auditory models wrapped up for special applica-
tions. Examples of such collections are Eidos that targets
speech analysis [30], Faame9 that targets model evaluation
[31], or Two!Ears that targets the simulation of robotic
hearing including basic cognitive functions [32]. As an inter-
esting side note, the Two!Ears toolbox is based on an early
version of the AMT, demonstrating the importance of freely

Figure 1. Functional structure of the AMT with stages reflecting the monaural processing stages of the auditory periphery (Left ear,
Right ear), followed by an optional stage of binaural interaction (Binaural) and stages modeling perceptual or even behavioral
outcomes (Perception & Behavior).

1 https://www.urmc.rochester.edu/labs/carney/publications-
code/auditory-models.aspx.
2 https://github.com/HearingTechnology/Verhulstetal2018
Model.
3 https://www.ece.mcmaster.ca/~ibruce/zbcANmodel/zbcAN
model.htm.
4 http://nsl.isr.umd.edu/downloads.html.
5 https://www.psychol.cam.ac.uk/files/tv2018matlab.zip.

6 https://code.soundsoftware.ac.uk/projects/soma.
7 https://sourceforge.net/p/dsam/git/ci/1619b6db26b0b862c5
c323c75e1fed630df2e8fd/.
8 https://brian2hears.readthedocs.io/en/stable/index.html.
9 https://www.faame4u.com.

P. Majdak et al.: Acta Acustica 2022, 6, 192

https://www.urmc.rochester.edu/labs/carney/publications-code/auditory-models.aspx
https://www.urmc.rochester.edu/labs/carney/publications-code/auditory-models.aspx
https://github.com/HearingTechnology/Verhulstetal2018Model
https://github.com/HearingTechnology/Verhulstetal2018Model
https://www.ece.mcmaster.ca/~ibruce/zbcANmodel/zbcANmodel.htm
https://www.ece.mcmaster.ca/~ibruce/zbcANmodel/zbcANmodel.htm
http://nsl.isr.umd.edu/downloads.html
https://www.psychol.cam.ac.uk/files/tv2018matlab.zip
https://code.soundsoftware.ac.uk/projects/soma
https://sourceforge.net/p/dsam/git/ci/1619b6db26b0b862c5c323c75e1fed630df2e8fd/
https://sourceforge.net/p/dsam/git/ci/1619b6db26b0b862c5c323c75e1fed630df2e8fd/
https://brian2hears.readthedocs.io/en/stable/index.html
https://www.faame4u.com


available and reproducible implementations of auditory
models. On the other hand, the AMT also gains from such
freely available model implementations, some of which have
been integrated in the AMT. Beginning with the first AMT
release (the version 0.003 released as a draft in 2010), the
continuous contributions from the auditory community
have helped us to extend the AMT. Through the AMT ver-
sions 0.x (described in [33] and released between 2013 and
2020), the AMT has matured to a large collection of audi-
tory models.

However, the AMT 1.x is more than a collection of
auditory model implementations – it is rather a framework
providing sophisticated mechanisms supporting the models
and the users. Figure 2 shows the logical structure of the
AMT 1.x, in which we distinguish between the code, the
data, and further information available online for down-
load. The AMT 1.x integrates third-party toolboxes, mostly
to provide some basic functionalities and to accommodate
individual model requirements. Further, the AMT 1.x
provides model-independent resources such as core and
common functions, a caching mechanism, and access to
auxiliary data with an online data repository. The auditory
models can be accessed directly as functions, and their work
can also be reproduced in the so-called experiments and
demonstrated in the so-called demonstrations.

The recent releases of the AMT 1.0 and 1.1 (June and
December 2021, respectively) offer new features and impor-
tant structural changes. As compared to the description of
the AMT versions 0.x [33], in this article, we focus on the
new features of the AMT10, the general AMT mechanics,
and provide comprehensive descriptions from the perspec-
tives of the AMT users and contributors.

In the next section, we briefly enlist the available
models (as of the AMT 1.1) and describe model-dependent
AMT parts, including the system used to track the qual-
ity of model implementations. Then, we describe the
AMT environment in greater detail, providing general
information about the AMT such as the documentation
system. Finally, we provide some practical tips for getting
started with and contributing to the AMT.

2 Models

Within the AMT, auditory models are implemented as
model functions and have their associated model stages.
They are accompanied by model-specific plotting functions,
signal generators, demonstrations, and experiments for the
reproduction of published results. The status of each model
implementation is tracked in order to provide an estimation
of the quality of the integrated models. In this section, we
describe the models, model stages, demonstrations, and
experiments as released in AMT version 1.1. The model-
dependent parts of the AMT structure are shown in the left
part of Figure 2.

2.1 Models and their stages

In the AMT, a model is a stand-alone and testable algo-
rithm publicly described in a scientific article discussing
model parameters and providing evaluation results. There
are many models implemented in the AMT and the list is
dynamic and growing. In this manuscript, we focus on the
mechanisms behind the model implementations and only
briefly describe the model functionalities. A complete list
of models can be found at the AMT website. A detailed
description of each model’s functionalities and properties
can be found in the corresponding publications.

Model implementations are stored as functions in the
AMT directory models. They are named by the last
name of the first author and the year of the corresponding

Figure 2. Logical structure of the AMT 1.x. Green: AMT’s code consisting of functions and algorithms. Grey: Data and third-party
toolboxes. White: Information available online for download. Left side (Plot, Signals, Models and model stages, Demonstrations, and
Experiments): model-dependent AMT parts discussed in Section 2. Right side (Core, Data, Common, Cache, Auxiliary data, Third-
party toolboxes): AMT’s environment described in Section 3.

10 Following the semantic versioning (https://semver.org/), all
AMT 1.x versions are aimed to be backwards compatible within
the major version number. Thus, while in this article, we
describe the AMT as of the version 1.1, our description applies to
all AMT 1.x versions, to which, for the sake of clarity, we refer to
as the AMT (see also the section “Data availability statement”).

P. Majdak et al.: Acta Acustica 2022, 6, 19 3

https://semver.org/


publication, e.g., dietz2011 for Dietz et al. (2011) [34].
While this naming convention may appear unfair to
the remaining contributing researchers, it is simple and pro-
vides great visibility to the principal author who is in
most of the cases also responsible for the model implemen-
tation. If there are multiple publications with the same
last name and year, a short but descriptive postfix is
appended after year distinguishing e.g. vicente2020

from vicente2020nh
11. While a model’s input parame-

ters heavily depend on the model, the first input parameter
is always the auditory signal and in matrices, the first
dimension is time (or the sampled time interval).

A model function can further depend on other functions
explicitly linked with the model. These so-called model
stages are usually not stand-alone, i.e., they are part of a
model and they need a model in order to be tested. Only
model stages belonging to a model can be included in the
AMT 1.x. Model stages are stored in the directory com-
mand “model-stages”, and, in order to pronounce the
link to the model, model stages have the prefix of the model
function followed by an underscore and stage description,
e.g., dietz2011_interauralfunctions12.

For some model stages of the auditory pathway, estab-
lished approaches are available and are used by a variety of
other models. Such model stages do not have an explicit link
to a specific model and are thus integrated as common func-
tions (see Sect. 3.5). In the following, we briefly describe
models and common functions according to the functional
structure shown in Figure 1.

2.1.1 Outer and middle ear

The processing of the outer ear is supported by the com-
mon functions headphonefilter and hrtf2dtf, com-
bined with model-dependent head-related transfer functions
(HRTFs) and the corresponding third-party toolbox func-
tions enabling the modeling of HRTF effects. The common
function itdestimator collects commonly used
approaches to extract timing information from HRTFs,
which can be checked by ziegelwanger2014 [35] for
their geometrical consistency. The common function
itd2angle further provides a simple solution to create a
relationship between the processed binaural timing cues
and sound incidence angle. The transmission properties of
the middle ear can be modeled by the common function
middleearfilter.

2.1.2 Basilar membrane and hair cells

Signal processing approaches approximating cochlear
processing consist of modeling the basilar membrane
excitation and the subsequent transmission by inner
hair cells. Modeling the basilar membrane velocity as a
function of frequency can be done by lopezpoveda2001

[36], hohmann2002 [37], lyon2011 [14], and
verhulst2012 [38], as well as the common functions

auditoryfilterbank, gammatone, gammachirp, or
ufilterbankz. These approaches include the active feed-
back of the outer hair cells in various ways. The transmis-
sion of the inner hair cells is supported by the common
function ihcenvelope, which can be parametrized
depending on the targeted behavior.

2.1.3 Auditory nerve

The auditory nerve (AN) is often linked to the models
of the basilar membrane and hair cells. Hence, the models
zilany2007 [39], zilany2014 [40], and bruce2018

[17] implement the complete chain from sound pressure to
spike rates of AN fibers. The AN functionality alone can
be modeled with the common function adaptloop [41],
which can be parametrized to simulate non-linear AN
properties by various approaches [5, 41–44].

2.1.4 Brainstem

An important property of the neural auditory pathway
from the cochlear nucleus to the inferior colliculus is the
sensitivity to temporal modulations, which is supported
by the models ewert2000 [6] and carney2015 [15] as
well as by the modulationfilterbank [5] based on
the temporal modulation transfer functions, both imple-
mented [45] in the common function modfilterbank.
Models that also integrate the more peripheral stages with
some processing of higher neural stages are dau1996 [41],
dau1997 [5], roenne2012 [46], verhulst2015 [47],
verhulst2018 [16], relanoiborra2019 [43], and
king2019 [48]. Note that while some models output indi-
vidual neural spikes, others output spike rates or even more
abstract measures of neural activities.

Binaural processing is supported by the models
lindemann1986 [49], breebaart2001 [42],
dietz2011 [34], and takanen2013 [50].

2.1.5 Perception and behavior

The last section involves models describing various
aspects of perception. In the AMT 1.1, we have loudness
models represented by moore1997 [52], glasberg2002
[53], and chen2011 [54] as well as a loudness model consid-
ering binaural inhibition, moore2016 [55]. We have
monaural speech perception models such as joergensen
2011 [56], taal2011 [57], and joergensen2013 [7],
and models considering binaural speech processing such as
culling2004 [58], jelfs2011 [59], leclere2015

[60], hauth2020 [61], prudhomme2020 [62], vicente
2020nh [63], vicente2020 [64], and lavandier2022

[65]. For perceptual similarity, we have osses2021 [66]
as a monaural model and llado2022 [67] as a binaural
model considering the effect of head-worn devices. Last
but not least, we have many models of spatial perception:
zakarauskas1993 [68], langendijk2002 [69], may

2011 [70], baumgartner2013 [71], georganti2013

[72], wierstorf2013 [73], baumgartner2014 [74],
reijniers2014 [75], kelvasa2015 [76], baumgartner

11 Note the lack of underscore between the year and the postfix
showing that vincent2020nh is not part of vincent2020.
12 Note the underscore between the year and the postfix showing
that interauralfunctions is part of dietz2011.

P. Majdak et al.: Acta Acustica 2022, 6, 194



2016 [34], hassager2016 [77], baumgartner2017 [78],
li2020 [79], baumgartner2021 [80], barumerli

2021
13 [81], and mclachlan2021 [82]. Those models of

spatial perception focus on either the direction, externaliza-
tion, or distance of the sound source. The most recent
models apply Bayesian inference to account for higher
cognitive processes of information integration across cues,
modalities, and time.

2.2 Demonstrations and experiments

Demonstrations are scripts which can be run without
any parameters in order to demonstrate the functionality
of a model or data set. Demonstrations have the prefix
demo_ and are stored in the directory demos. Demonstra-
tions provide a visual representation of a model output.
Figure 3 shows an example of a demonstration. Demonstra-
tions are scripts, not functions. Thus, they finish with all
used variables in the user’s workspace, ready to be
inspected by the user for easily getting insights into the
model’s functionality.

Experiments address the reproducible-research objective
of the AMT. They aim at reproducing model results from
publications related to the models. Ideally, they produce
exactly the same results as those from the corresponding

article. By visually comparing the experiment output, the
quality of the model can be estimated (see Sect. 2.4).
Figure 4 shows an example of the output of such an exper-
iment function, along with the actual graphic from the orig-
inal publication. Experiments are functions (not scripts)
with the prefix exp_ followed by the last name of the first
author and the year of the publication reporting the simu-
lation results. Most of the AMT experiments are those repli-
cating the outcome of a publication describing a model; e.g.,
in the AMT 1.1, exp_li2020 replicates figures from Li
et al. (2020) [79] obtained by running the model li2020.
A parameter with the prefix fig is used to reproduce a
figure; e.g., exp_li2020(‘fig2’) reproduces Figure 2
from Li et al. (2020) [79] as shown in our Figure 4. Simi-
larly, a parameter with the prefix tab is used to reproduce
the results of a table, e.g., exp_baumgartner2014

(‘tab2’) reproduces Table 2 from Baumgartner et al.
(2014) [74].

In addition to the experiments directly replicating the
original model publication, applications of a model can be
implemented as additional experiments. If such an applica-
tion is published in a secondary publication, in the AMT,
the naming convention is to use the naming of the secondary
publication. In the AMT 1.1, we have a few of such cases:
exp_baumgartner2015 [83] and exp_baumgartner

2015binweight [84], both applying baumgartner2014
[74]; exp_engel202114 [85] applying threemodels, namely
jelfs2011, reijniers2014 and baumgartner

2021; exp_osses2022 [86] applying dau1997,

verhulst2015, verhulst2018, bruce2018, king

2019, relanoiborra2019, and osses2021;

exp_roettges2022 [87] applying hauth2020; as well
as exp_steidle2019 [88] applying itdestimator

and ziegelwanger2014.
Experiments can also be used to pass the reproduced

results to the caller functions for further processing. Their
difference to the functions providing auxiliary data
(data_) is that experiments process some data by the mod-
els, whereas the data functions just load existing data. Still,
the focus of the experiments is to reproduce model results. If
some experiment output is used frequently by others, this
output is a good candidate for a transfer to a data function
in the future.

2.3 Model-dependent plotting and signal generation

While MATLAB and Octave provide a variety of func-
tions for signal generation and plotting, the AMT provides
functions specifically supporting the requirements of audi-
tory models. Signal generators have the prefix sig_ and
are stored in the signal directory. Plotting functions have
the prefix plot_ and are stored in the plot directory.

For file names, we follow the same pattern as for other
parts of the AMT functionality. Generators and plotting
functions, which have been made specifically for a particu-
lar publication, have the author-year identifier in their file
names; e.g., sig_hartmann1996 generates the signals

Figure 3. Output generated by the AMT function
demo_baumgartner2014, consisting of a panel shown in a
figure and alphanumeric output to the command window. Panel:
The circles show the actual responses of the listener NH58 [95]
localizing noise bursts presented from various target angles along
the median plane. Brightness encodes the probability to respond
at an angle as predicted by baumgartner2014 [74]. Text:
Predicted metrics of localization performance for that listener

13 Will be replaced by barumerli2022 in future releases to
reflect the actual publication year of the article.

14 Will be replaced by exp_engel2022 in future releases to
reflect the actual publication year of the article.

P. Majdak et al.: Acta Acustica 2022, 6, 19 5



tested in Hartmann and Wittenberg (1996) [89]. Functions
that are used more widely across multiple publications and
represent more general plotting and signal generation have
their functionality in the filename; e.g., sig_ildsin

generates a binaural sine wave with an interaural level
difference.

2.4 Model status

The AMT team tracks the status of each model imple-
mentation in order to provide an estimation of the quality
of all model implementations available. The model status
describes the quality of the model’s source code and docu-
mentation, as well as its verification. The verification
considers the correspondence between the results shown in
the corresponding publication and the results provided by
the AMT implementation, usually implemented within
the experiment functions.

The status of the code and the documentation distin-
guishes between four states (with letter score in brackets):

� Perfect (A): The code/documentation fully complies
with the AMT conventions; there are no open issues.

� Good (B): The code/documentation follows the AMT
conventions, but there are still open issues.

� Satisfactory (C): The code/documentation fits the
AMT conventions just enough for being available in
the release version for download. The model and its
documentation appear on the website, but major work
may still be required.

� Submitted (D): The model has been submitted to the
AMT team and the code has been included in the
source-code repository as submitted, but it has not
been integrated yet (no documentation, potential
compilation errors, libraries missing, etc). In the
release version, the model neither appears on the web-
site nor is it available for download. The current state
of the integration can be provided upon request.

Note that after reaching the status “Perfect”, that model
status remains even when a minor issue appears (most
probably raised by an AMT user).

The status of the verification consists of four states:
� Verified (A): The experiments produce the same
results as in the publication. Minor differences are
allowed if a plausible explanation is provided, e.g.,
layout issues in the graphical representations or
randomness introduced by noise or other probabilistic
modeling approaches.

� Qualified (B): The experiments produce similar
results as in the publication in terms of showing trends
and explaining the effects but not necessarily match-
ing the numerical results. Explanations for the differ-
ences can be provided, for example, not all original
data being available, or the publication being affected
by a known and documented bug.

� Untrusted (C): The verification code is available but
the experiments do not reproduce the relevant parts
of the publication. The AMT team is seeking for a
solution to reveal the problems in the discrepancy
between the publication and the implementation.

� Unknown (D): The current AMT version cannot run
experiments for this model and cannot produce any
results usable for verification. This is the default state
right after having a model implementation provided
to the AMT team.

A table providing an overview of the available models
and their status can be found on the AMT website15. Note
that the status is only a snapshot of the development
because the implementations in the AMT are continuously
developed, evaluated, and improved. The status is not fixed
at any time and can be appealed by the authors. Any feed-
back is appreciated either via email or ticket created on the
source-code repository system at SourceForge16.

3 Environment

Figure 2 shows the logical structure of the AMT 1.x.
The auditory models are complemented by model-
independent resources such as core functions, common

Figure 4. Left: Output generated by the AMT function exp_li2020(‘fig2’);, reproducing Figure 2 from Li et al., (2020) [79]
showing the actual and predicted externalization rating as a function of ILD variation. Right: The original Figure 2 from Li et al.
(2020) [79].

15 http://amtoolbox.org/.
16 https://sourceforge.net/.

P. Majdak et al.: Acta Acustica 2022, 6, 196

http://amtoolbox.org/
https://sourceforge.net/


functions, a caching mechanism, and access to auxiliary
data with an online data repository. Further, the AMT uses
various third-party toolboxes, mostly to accommodate indi-
vidual model requirements. The AMT uses MATLAB [20]
or Octave [90] as the environment (for more details on
the requirements, see Sect. 4). Thus, we use MATLAB’s
syntax in the following sections when describing the AMT
functionality.

3.1 Core functions

The core functions control the configuration and the
workflow of the AMT. The most essential function is
amt_start, which installs toolboxes when required and
sets up a default configuration for the work with other
AMT functions. Other AMT core functions further warrant
proper functioning, for example, through compilation of
binaries on the user’s system (amt_mex), calling functions
from external environments (amt_extern), handling the
cache (amt_cache, see Sect. 3.3), loading auxiliary data
(amt_load, see Sect. 3.4), or running experiments
(amt_emuexp).

The AMT configuration can be retrieved with [f,k]

=amt_configuration, where f returns the configura-
tion flags and k returns the status, paths of toolboxes (see
Sect. 3.2), base path of the AMT, paths of auxiliary data
(see Sect. 3.4) and cache (see Sect. 3.3), as well as the names
of the current and previous AMT versions. The configura-
tion can be displayed by calling amt_info. The flags can
also be obtained by the function amt_flags. Most of
the configuration parameters can also be obtained by the
functions amt_basepath, amt_auxdatapath and
amt_auxdataurl, amt_cache, and amt_version.
The AMT can be stopped with amt_stop, which removes
the configuration from the system but does not delete the
user’s variables.

The AMT core function amt_disp is used for display-
ing text in the command window, specifically targeting
the AMT configuration. It is an obligatory replacement
for MATLAB’s built-in function disp. When called
without further flags, amt_disp outputs the message in
a similar way to disp, with the behavior depending
on the global verbose mode of the AMT (see details of
amt_start for further explanation on the start-up
configurations). When called with the parameter
volatile, progress can be displayed in loops, i.e., by
calling amt_disp(..,’volatile’); in a loop and
calling amt_disp(); after the loop. For messages
showing results that are important for the online documen-
tation, amt_disp can be called with the parameter
documentation.

The AMT supports interfaces to external environments.
This way, the AMT is not limited to run models written for
MATLAB or Octave only – the model processing is
triggered by amt_extern within the AMT environment,
but the models are actually run outside of MATLAB or
Octave. The external environments can be installed any-
where on the user’s system as long as they are accessible
within the AMT environment. This can be done by setting

corresponding paths on the user’s system. Files intended to
be executed by an external environment are stored in the
directory environments. Currently, two environments
are in use. Models implemented in Python can be executed
by calling the AMT function amt_extern. The AMT 1.x
uses Python version 3 installed with packages NumPy and
SciPy. Models implemented in interoperable programming
languages such as C and C++ can be compiled to binary
executable files, which are then executed on the user’s
machine. These files are compiled by amt_mex, which
produces MEX binaries that shadow MATLAB or Octave
files for faster processing. These files are stored in the direc-
tory mex and oct to work in MATLAB and Octave,
respectively. Further, amt_mex executes make.bat on
Windows or makefile on Linux to compile native binaries
used by external environments and stored in the AMT
directory environments. For compiling, the AMT
requires the GNU compiler collection (GCC).

The AMT core function amt_emuexp provides a
functionality to emulate psychophysical experiments by
simulating the underlying processes. In a typical psy-
chophysical experiment (e.g., Fig. 5, top), after an initializa-
tion of the procedure, signals are generated and provided to
a human listener. Then, the listener processes them and,
based on cognitive mechanisms, provides a decision. This
decision triggers the procedure to continue with the
experiment until it finishes with a result. The function
amt_emuexp emulates all those components (Fig. 5,
bottom). The initialization phase consists of setting up
amt_emuexp by separately providing parameters for the
experiment, the signal generation, the auditory model,
and the decision stage. Each of the four initializations are
triggered by calling amt_emuexp with the corresponding
init parameter. The experiment is started by calling
amt_emuexp with the run parameter. Then, the signals
are generated, their processing by the auditory model is
triggered, and the model outputs are provided to the deci-
sion stage. The decision output triggers the amt_emuexp

procedure to continue with the simulation until it finishes
with a result. Note that functions for creating the signals,
modeling the auditory system, and providing the decision
are not part of amt_emuexp and can be any functions of
the AMT environment. An example of using amt_emuexp

can be found in demo_breebaart 2001 demonstrating a
three-alternative forced choice experiment [42]. The func-
tionality of amt_emuexp is similar to that from AFC17,
[91]; both support the emulation of experiments following
the interface proposed for testing and comparing models
called “model initiative” [92]. This interface integrates the
experiment software, an auditory pathway model, and
task-dependent decision stages – on potentially remote
computers irrespective of their underlying program-
ming language. In amt_emuexp, this mode is initiated
by initializing the amt_emuexp experiment with the
parameter interface set to ModelInitiative, see
exp_breebaart2001 for an example.

17 http://www.aforcedchoice.com.

P. Majdak et al.: Acta Acustica 2022, 6, 19 7

http://www.aforcedchoice.com


3.2 Dependencies and third-party toolboxes

The AMT uses various third-party toolboxes, which
are packages of code developed by others independently
of the AMT. They have their own, but AMT-compatible,
license and are used by the AMT but not owned by the
AMT team. These toolboxes are stored in the directory
thirdparty. Alternatively, the user can also store them
anywhere on the system and make them available within
the environment’s search path.

We distinguish between essential and model-dependent
toolboxes. The large time-frequency analysis toolbox
(LTFAT) [93] is an essential toolbox, which means that
the AMT will not run without it. The AMT uses the
LTFAT’s core functions for parsing the input parameters
(LTFAT function ltfatarghelper) and signal-processing

matrix functions such as assert_sigreshape_pre. If
locally not available, the LTFAT will be automatically
downloaded and installed. The AMT will terminate with
an error if that procedure fails.

The model-dependent toolboxes are not required to
run the AMT, however, they are required when executing
specific models. There is a variety of such toolboxes used
within the AMT. For example, the application program-
ming interface (API) for the spatially oriented format for
acoustics (SOFA) handles HRTFs stored as SOFA files
and provides general functionality to analyze, process,
and display such data [94]. In the AMT, the SOFA API
is used by models requiring HRTFs. Another example is
the sound field synthesis toolbox (SFS), which is used by
wierstorf2011 in order to approximate the sound field
provided by loudspeaker arrays before modeling its audi-
tory processing [72]. These toolboxes are, along with the
Circular Statistics and the Binaural Spherical Harmonics
toolbox, provided within the AMT 1.1 full release package
(see Sect. 4).

3.3 Cache

The AMT uses a two-level caching mechanism for stor-
ing pre-calculated results. The first level of the cache is
locally stored in the AMT directory cache. That local
cache has a read/write access. This means that after having
some data calculated, the results can be stored in the local
cache and be accessed later on. The second-level cache is
integrated in the online repository of the AMT, in which
the cache data is stored for each AMT version separately.
This online cache is read-only. Hence, the AMT can pull
data from it and store it in the local cache. However, only
the AMT team can push new data to the online cache. This
combination of two cache levels avoids recalculations at the
local level of a user and ensures valid online cache data
controlled by the AMT team. The online cache uses incre-
mental versioning. Hence, only data that differs from previ-
ous versions are stored.

The AMT cache mechanism is controlled by the func-
tion amt_cache that supports the commands get for
accessing cached data as well as set for storing calculated
data in the local cache (and further commands controlling
the behavior of the cache system, see the documentation
of amt_cache). When accessing cached data, first the
data are searched in the local cache, and if not available,
the online cache is accessed. The data are stored in files
named by the user within the AMT’s cache directory and
subsequent directories named by the caller function. For
example, when the file example.m executes the command
amt_cache(‘set’,’xyz’, a, b, c), the AMT will
create a directory named example and store the vari-
ables a, b, and c in the file xyz.mat. The access to
such a cached file is then given by calling [a, b, c] =

amt_cache(‘get’, ‘xyz’). If the cached file
(xyz.mat) does not exist, neither locally nor online, the
output variables (a, b, c) will be empty, indicating that
a recalculation should be triggered. For more details, see
the help section of amt_cache.

Figure 5. Example of a typical psychophysical experiment
(top) and its emulation within the AMT (bottom). Top: In a
physical experiment, after initialization, the main procedure
triggers signal generation. The subject, who receives the signals,
processes them and provides a decision, terminating with a result
after a sufficient number of iterations. Bottom: Emulation of
that experiment by amt_emuexp: Initialization of the corre-
sponding components (Init), procedure stage (Run) controlling
the signal generation, modeling cognitive processes, triggering
the decision stage, and calculating the result. Green: Integral
parts of the experiment procedure (top) and amt_emuexp

(bottom). Grey: Experiment parts representing the participant
(top) and functions outside the amt_emuexp (bottom).

P. Majdak et al.: Acta Acustica 2022, 6, 198



The AMT supports four global caching modes helping to
control the access to the local and online repository. The
globalmode is set up during the startup by amt_start,
which can be called with one of the cache modes as an input
argument. When calling amt_cache in the normalmode,
the local cache will be used. If the data is not available in the
local cache, it will be downloaded from the Internet. If it is
remotely not available, recalculation of the data will be
enforced. Note that this methodmay by-pass the actual pro-
cessing and thus does not always test the actual functional-
ity of a model. It is, however, convenient for the fast access of
results and figures. In contrast, the redomode enforces the
recalculation of the data without even checking the cache. In
the redo mode, the get command of amt_cache always
outputs empty variables, triggering the recalculation. The
cached mode is the opposite to the redo mode and
enforces amt_cache to always use the cached data. If the
cached data are not available, neither locally nor remotely,
an error will be thrown. In the fourth cache mode,
localonly, cached results will be loaded from the local
cache, but will be recalculated if they are not available
locally. This mode is intended for running the AMTwithout
access to the Internet.

All these four caching modes are supported by the get
command of amt_cache, allowing the user to selectively
control the cache behavior of specific AMT functions. For
example, exp_lindemann1986(‘fig6’) plots the
respective figure from Lindemann et al. (1986) [49] based
on cached results, whereas exp_lindemann1986

(‘fig6’,’redo’) first calculates the data and then
plots that figure.

3.4 Data functions and auxiliary data

Most of the models require data to run and test them.
The AMT provides various mechanisms to access that data.
We distinguish between auxiliary data, data functions, and
the access to HRTFs.

Auxiliary data are large chunks of data that are not pro-
vided with the AMT code. This data can be accessed with
the function amt_load. The data are retrieved from the
directory auxdata, where they are locally stored and
structured by the model name. Correspondingly, amt_

load requires two parameters: the model and the name
of the dataset. An optional third parameter can be used
to load only a single variable from a larger dataset. If the
requested dataset is locally not available, it will be down-
loaded from the AMT online auxiliary data repository,
and locally stored in the AMT directory auxdata for
future usage. Note that the local auxdata directory con-
tains data for the particular AMT version only and the
online auxdata repository contains data for each AMT
version separately based on incremental versioning. Hence,
only the data that differs from previous versions are stored.
Further, note that amt_load loads MAT files per default,
but it can also be used to load audio files in WAV format, in
which case amt_load returns two variables: the audio
data and the sampling rate.

Data functions access data referring to a specific
publication. They have the prefix data_, e.g., data_

majdak2010 returns the localization responses from
Majdak et al. (2010) [95]. Data functions provide intuitive
access because they can provide a documentation within
the function’s in-code documentation and refer to the corre-
sponding publication. Note that some of the data functions
internally use amt_load to load larger amounts of auxil-
iary data.

HRTFs form a separate data category. They describe
the acoustic filtering of the sound by the listener’s body,
in particular, the head, torso, and ears [96]. The AMT
stores HRTFs in the directory hrtfs as so-called SOFA
files, and uses the SOFA API for MATLAB/Octave for
their handling. Similarly to amt_load, the API’s function
SOFAload for loading an HRTF dataset supports the
caching of the HRTFs, which are, if not found locally,
automatically downloaded from the AMT online HRTF
repository.

3.5 Common functions

Common functions are helpers and converters used
by models and model stages. A common function repre-
sents an algorithm with an established functionality
within the auditory community, has a technical back-
ground, and can be used among various models. They are
not part of the AMT structural core (in contrast to amt_

core functions), and neither are they model-specific (in
contrast to model stages), but they do calculations (in
contrast to data functions). Common functions are
stored in the directory common and usually created by
the AMT team as soon as multiple models use a similar
functionality that can be integrated to a single stand-alone
function.

In the AMT, we have common functions that perform
filter bank processing, envelope extraction, fading of signals,
frequency-scale conversions, level conversions, and much
more. Moreover, there are common functions calculating
important parameters such as standardized hearing thresh-
olds. In contrast to data functions, common functions per-
form some calculations, e.g., by interpolating or
numerically evaluating a formula.

An important property of common functions is their
model independence. This is obvious when considering
functions such as sph2horpolar that converts between
spatial coordinate systems. Still, the model-dependent
functionality of a common auditory function can be trig-
gered by using model-dependent flags. An example is
ihcenvelope implementing the widely used model of
the inner hair cells applying signal rectification followed
by low-pass filtering to the input signal. The model specific
parametrization of ihcenvelope can be triggered by
using model-specific flags. For instance, in order to use
the inner hair cell processing with parameters from
Bernstein et al. (1999) [97], the flag ihc_bernstein1999
can be employed, i.e., ihcenvelope(insig, fs,

‘ihc_bernstein1999’).

P. Majdak et al.: Acta Acustica 2022, 6, 19 9



4 Getting started with the AMT

The AMT 1.1 has been developed and tested with
MATLAB 2016a and Octave 6.2 under Windows 10 Pro
(2004) and Linux Ubuntu Focal Fossa (20.04 LTS). Other
AMT 1.x versions are being developed and tested with up
to five-years old MATLAB versions. While most of the
models will work with even older versions of MATLAB
and Octave, we recommend using one of the tested
environments. When using MATLAB, additional tool-
boxes, such as the Signal Processing Toolbox and the
Statistics and Machine Learning Toolbox may be required
to run some of the models. With MATLAB 2016a or later,
these toolboxes can be installed by using the Add-On
Explorer within the MATLAB user interface. Similarly,
when run in Octave, some models require additional pack-
ages such as signal, statistics, and netcdf, which
need to be installed by the user before starting. Finally, the
AMT 1.x requires third-party toolboxes (see Sect. 3.2),
which can be obtained in several ways, depending on the
installation method.

The easiest and recommended method to install the
AMT is to use a release marked as amtoolbox-full

package, which contains all the third-party toolboxes. With
a full package downloaded and unzipped on the user’s
system, the AMT is installed and can be started with
amt_start.

The second method is to let the AMT download the
third-party toolboxes during the first start of the AMT.
This is required when the full package of the AMT release
is not available. This installation method can then be trig-
gered with amt_start(‘install’), which performs an
interactive inquiry of the toolboxes to be downloaded and
installed.

The third method is the manual installation of the
third-party toolboxes by the user. This method provides
the most flexibility, but requires more effort and knowledge
about the user’s system.

Regardless of the installation method, if the LTFAT is
not available on the start of amt_start, amt_start will
per default download and install it (or terminate with an
error if the install fails), because the LTFAT is an essential
toolbox for the AMT. However, amt_start does not
download other toolboxes because they are not essential
to the AMT’s core functionality.

Some of the AMT models need to be compiled for the
particular system of the user. For the user’s convenience,
some pre-compiled binaries are provided with the release
of the AMT. However, binaries compiled for the user’s
system may be required in some cases. This can be done
by executing the command amt_mex, which 1) compiles
the corresponding MATLAB/Octave files to the so-called
MEX binaries and 2) compiles the C and C++ files pro-
vided with the AMT to binary files. In order to run amt_

mex, the GNU compiler collection (GCC) must be available
as the command gcc within the AMT environment. The
particular package depends on the user’s operation system
and can be downloaded from many sources on the Internet.
The availability can be checked by two means: 1) calling

mex -setup shows the compilers available to compile
MEX files; or 2) calling system(‘gcc -v’) displayes
the installed GCC version if available. Note that amt_

start(‘install’) also executes amt_mex in order to
provide compiled models.

The AMT configuration and the status of the avail-
able toolboxes are handled by the command amt_

configuration (see Sect. 3.1). Information on which
toolboxes are required for running a specific model can be
queried by executing amt_info with the model name as
an input argument.

5 Contributing to the AMT

Each AMT user is warmly welcome to contribute to the
AMT. The motivations for a contribution can be manifold.
For example, an AMT user has implemented a model and
wants the findings to be available and accessible for future
research to increase its potential impact. Or, an AMT user
has applied a model from the AMT and has implemented
experiments or demonstrations displaying its functionality.
Or, an AMT user has a general urge to support reproducible
research and to learn about open-source projects and audi-
tory modeling.

5.1 Coding

Before locally modifying AMT files, we highly encourage
contributors to retrieve the most recent version from the
sourcecode repository18 and to integrate their modifications
there. This way, modifications can be uploaded to the
online repository, will not be forgotten on the local com-
puter, and can be spread among the AMT community.
To this end, we recommend the following workflow (we
assume a general knowledge of Git, a distributed version-
control system for the collaborative development of soft-
ware, [98]):

� Retrieve the AMT repository and clone the code
using git clone https://git.code.sf.net/p/amtoolbox/
codeamtoolbox-code

� Create a branch named by your last name and the
year of your contribution, e.g., smith2021 for Ms.
Smith contributing in 2021. The corresponding Git
command would be git branch smith2021 in that
example.

� Switch to that branch, e.g., git checkout

smith2021

� Write the code and add all your files to the repository,
git add your_files.

� Commit your changes to your local Git repository and
describe the changes.

Note that by using a branch, no harm can be done to
the “official” AMT code at all.

In the next step, the modifications can be provided to
the AMT team by pushing the local branch to the AMT

18 https://sourceforge.net/p/amtoolbox/code/.

P. Majdak et al.: Acta Acustica 2022, 6, 1910

https://git.code.sf.net/p/amtoolbox/codeamtoolbox-code
https://git.code.sf.net/p/amtoolbox/codeamtoolbox-code
https://sourceforge.net/p/amtoolbox/code/


repository. To this end, the user needs to obtain write
access to the repository which is provided by the AMT
team after approaching us via email. The user’s Source-
Forge19 account will be included to the list of AMT devel-
opers, enabling the user to push the files to the online
AMT repository. Then, the AMT team will review the
user’s contribution aiming at integrating that contribution
in the main AMT code. For contributions written in pro-
gramming languages other than MATLAB or Octave, the
AMT team will provide the means for their integration
(e.g., see Sect. 3.1). While we are happy about contributions
with perfectly structured code, clear parameter passing, and
naming exactly following the AMT conventions, we encour-
age all programmers and researchers to contribute their
code as it is and as soon as possible [99]. Still in order to
make the integration of changes as smooth as possible,
the contributors are asked to consider the following rules.

5.1.1 Environment

The aim is to warrant compatibility of the AMT 1.x
with up to five-year old MATLAB versions, i.e., MATLAB
2016a for the AMT 1.1. This needs to be considered when
developing and integrating own functions. Further, we
aim at using as few additional dependencies as possible.
When proposing a new MATLAB or third-party toolbox
as a requirement, we ask to check whether the required
functionality is already provided by the current AMT
version and/or its third-party toolboxes. When proposing
an additional third-party toolbox, we ask to check whether
it is freely available and if its license is GPL-compatible. We
also ask to check for further dependencies of those toolboxes
because third-party toolboxes need to be self-contained, i.e.,
not depending on further toolboxes, and need to consist of
code only (no data in the toolboxes). When adding a new
third-party toolbox, we ask to locally store it in the direc-
tory thirdparty, confirm its functioning within the
AMT environment, and notify us. We will then integrate
its functionality and usage within the AMT environment.
Note that, to keep the repository compact, it is not allowed
to include third-party toolboxes in the AMT code
repository.

5.1.2 Directory structure

The files are stored in directories reflecting the AMT
environment (see Sect. 3). The model contribution is repre-
sented by a single function in the directory models. This
model function can be complemented by (multiple) model
stages stored in the directory modelstages. Model-
specific data go to data, plotting functions go to plot,
and signal generators go to signals. Model demonstra-
tions go to demos and experiments reproducing results
go to experiments. Large data can be locally stored as
auxiliary data in auxdata; they need to be accessed by
amt_load and provided to the AMT team (link via email)
after having the code submitted to the remote repository20.

In demonstrations and experiments, if the processing dura-
tion is beyond a few minutes, we encourage to cache the
results via amt_cache.

5.1.3 Function and file names

Underscore is a reserved character in the AMT environ-
ment and used only to distinguish structural parts. All
function names are lowercase. This avoids a lot of confusion
because 1) the handling of the casing depends on the
operating system, and 2) in the MATLAB and Octave
documentations, function names are traditionally converted
to uppercase. Function names indicate what they do, rather
than which algorithm they use, or the person who pro-
grammed or invented it. For the reasons pointed out earlier
in Section 2, prominent exceptions represent the model
functions and their demonstrations as well as experiments,
which are named by the last name of the first author
followed by the year of the corresponding publication.

If the new model consists of several functions, the model
function contains the main functionality and the remaining
parts are covered by model stages. Stand-alone model
stages without a corresponding model are not allowed; a
model stage needs a model. Local functions, i.e., functions
within a file containing the main function, have the prefix
local_ in order to be easily distinguished from other
AMT functions. The function amt_disp is used to display
text in the command window, offering functionality such as
the volatile display of computational progress and the
singling out of specific results for publication in the online
documentation. For the sake of simplicity, object-oriented
programming and the usage of own classes are not
recommended.

5.1.4 Variable names and default parameters

Within each function, variable names are allowed to be
both lower and upper case, depending on the author’s
personal style. Global variables are not allowed because
they make the code harder to debug and to parallelize. In
matrices, the first dimension is time (or the sampled time
interval).

For the handling of default and optional parameters,
we use the functionality provided by the function
ltfatarghelper from the LTFAT21. When creating a
new model, all its default parameters can be stored in a
separate file placed in the directory defaults and named
by the model’s name with the prefix arg_. This file needs
to be a function with definput as an input and output
parameter, in which flags are stored in the structure
definput.flags and key-value pairs are stored in the
structure definput.keyvals – see any arbitrary arg_

function for more details. Then, inside the model function,
ltfatarghelper() is used for the parameter parsing
as follows:

definput.import = {‘model2021’}; [f,kv]

= ltfatarghelper({},definput,varargin);19 https://sourceforge.net/.
20 Commit of data to the code repository is not allowed. 21 See http://ltfat.github.io/doc/base/ltfatarghelper.html.

P. Majdak et al.: Acta Acustica 2022, 6, 19 11

https://sourceforge.net/
http://ltfat.github.io/doc/base/ltfatarghelper.html


resulting in flags and key-value pairs being stored in the
structures f and kv, respectively. The varargin input
passes the optional parameters provided through the
model call to ltfatarghelper. There, the input argu-
ments are processed from right to left. As a consequence,
the default parameters from the arg_ function will be
overwritten by the optionally provided parameters. While
ltfatarghelper supports more complex passing of
parameters, in order to provide a clearly structured
handling of the default parameters, we discourage from
loading multiple default parameter files.

5.1.5 Signal levels

Auditorymodels can be nonlinear and the numeric repre-
sentation of physical quantities like the sound pressure level
(SPL) must be well-defined. In the AMT, an audio signal
represents the sound pressure in Pascal and is represented
on the logarithmic dB scale re 20 lPa. Thus, an audio signal
having a root-mean square (RMS) level of 1 (e.g., a square
signal with the amplitude between �1 and 1, or a sine with
a peak amplitude of � ffiffiffi

2
p

) corresponds to an SPL of
93.9794 dB. This level convention reflects the SI system
and is the default level convention in the AMT22. However,
AMTmodels have beendevelopedwith a variety of level con-
ventions and a level conversion is sometimes required. To
this end, the AMT common function dbspl calculates the
SPL in dB of an audio signal considering the AMT level con-
vention. While this function is similar to the MATLAB/
Octave function rms, dbspl additionally converts to the
logarithmic dB scale and considers the AMT level conven-
tion. In some cases, an audio signal needs to be scaled to a
given SPL considering the AMT level convention. This can
be done with the function out=scaletodbspl(in,

spl), which scales in such that the SPL of out is spl.
The level convention can be ignored if only linear models,
such as the linear Gammatone filterbank, are applied. Note
that because of historical reasons, previous AMT versions
used a different level convention as the default.

5.2 Documentation

The AMT uses an in-code documentation system, i.e.,
the documentation text is embedded in the source-code
files of the implementation. This way, a high level of
integrity between the code and its documentation can
be provided while still generating a human-readable
documentation. When releasing a new AMT version, this
documentation is compiled by the compiler mat2doc23 to
an offline documentation available when calling help
within the MATLAB or Octave environment, e.g., help
exp_hassager2016, and an online documentation
published at the AMT documentation website.

The syntax of mat2doc is based on reStructuredText24,
a widely used markup syntax and parser component of

Docutils25. The documentation based on reStructuredText
can be compiled online26. In mat2doc, relevant differences
to reStructuredText are 1) the comment character % in
each line, 2) the first line representing a brief description
of the function, e.g.; %AMT_CACHE Caches variables,
according to MATLAB tradition, and 3) in all other lines,
applying the three-blank rule between % and the first letter
of the text, e.g., % This is an example.

In addition, mat2doc adds some environment-specific
features triggered by keywords. The keyword Usage:

appended by multiple lines shows how the corresponding
function can be called, e.g., % Usage: amt_start;.
The keywords Input parameters: and Output

parameters: appended by multiple lines can be used to
explain the input and output parameters of a function.
The keyword References appended by a single-line list
of BibTex27 identifiers includes a list of references used to
cite publications within the documentation. The corre-
sponding references are stored in the file project.bib

in the AMT directory mat2doc. The keyword See also:

appended by a single-line list of function names includes a
list of links to other relevant AMT functions. Note that
these keywords must be used exactly as given, including
the casing and colon.

Further, the in-code documentation supports the so-
called anchors, which are keywords to provide additional
and machine-readable information about the authors, the
requirements for running the models, their licenses, and
status (see amt_info). The anchors are encoded as
% #Anchor: (three blanks between % and #) and are pro-
vided in a comment block of the in-code documentation.
The author information is encoded by the anchor #Author
and canbe provided inmultiple lines (each of thembeginning
with % #Author:), enabling various author contributions
over the course of time. The information about requirements
uses #Requirements and represents the required environ-
ment (either MATLAB or Octave, never both), internal
packages (M-signal and/or M-statistics for
MATLAB toolboxes), third-party toolboxes (SOFA, SFS,

BinauralSH, and/or CircStat), and additionally
required environments (Python, Binary, and/or MEX).
The anchor #License enables the multi-licensing feature
of the AMT (see the following section). The model status is
encoded by the anchors #StatusDoc, #StatusCode,
and #Verification followed by the short name of the
status as enlisted in Section 2.4.

5.3 Licensing

The code written by the AMT core team is licensed
under the GNU general public license (GPL) version 3,
which basically allows users to run, study, share, and
modify the software. Also the code written by other contrib-
utors for the AMT is licensed under the GPL. By commit-
ting code to the AMT repository, contributors agree to use

22 Note that this is a non-compatible change with respect to the
AMT 0.x.
23 http://mat2doc.sourceforge.net/.
24 https://docutils.sourceforge.io/rst.html.

25 https://docutils.sourceforge.io/index.html.
26 http://rst.ninjs.org/.
27 http://www.bibtex.org/.

P. Majdak et al.: Acta Acustica 2022, 6, 1912

http://mat2doc.sourceforge.net/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/index.html
http://rst.ninjs.org/
http://www.bibtex.org/


that license and to transfer the ownership to the AMT
team, unless other licensing has been agreed.

While the AMT generally follows the GPL, the AMT
1.x also supports multiple licensing. Hence, model imple-
mentations provided by the researchers and integrated in
the AMT can be licensed under a license different from
the GPL. A researcher may choose a separate license regu-
lating the usage of that model, and while the author grants
the AMT team the permission to distribute the model to
third parties without a prior written authorization, the
model ownership remains with the author. This information
is clearly described within the corresponding files. Note that
some licenses (or even patents) may restrict the usage of the
model implementation. The code can be included in the
AMT as long as the license allows us to distribute that code
within the AMT.

Licensing also involves third-party toolboxes. For a
clear legal integration, only toolboxes with licenses compat-
ible for working with the GPL are used in the AMT. The
license information is stored in the toolboxes’ corresponding
directories as provided by the toolbox authors. The owner-
ship of third-party toolboxes remains with the toolbox
authors.

For models deviating from GPL v3, at their first usage,
the AMT displays a boilerplate, i.e., a brief note about the
separate license and the most important terms, such as
terms of usage. That boilerplate and the license type can
also be displayed any time by executing amt_info with
the model name as parameter. For example, a model can
be restricted to be used in non-commercial applications
only. In such a case, while the AMT is allowed to be used
in commercial projects (as a consequence of the GPL),
the user will be warned that by using that particular model,
commercial usage is prohibited.

Note the difference between a model deviating from
GPL v3 in the AMT and a third-party toolbox. A toolbox
is integrated without any modification and the ownership
remains with the authors. A model, even when integrated
under a license different to the GPL, requires code modifi-
cations. To this end, we seek permission from the research-
ers allowing us to edit and integrate their code. By having
the model integrated, it has joint ownership (unless the
researchers have transferred their ownership to us) and
remains under the researcher’s preferred license.

The license information is provided by the follow-
ing mechanism: 1) The AMT directory licenses stores
two plain-text files per license: the full license text and a
license’s boilerplate, named as X_license.txt and
X_boilerplate.txt, respectively, with X being the
short keyword describing the license; 2) The in-code
documentation provides file-specific information about the
license via the license anchor followed by the license
keyword (casing ignored). For example, the licenses

directory contains the files ugent_license.txt as
well as ugent_boilerplate.txt and by using
% #License: UGent in any file, that file will be licensed
under the license of the University Gent. Files without
the license information are licensed under the standard
AMT license.

5.4 Acknowledging researchers for their contribution

Developing new models is much work, while publish-
ing the model implementation online is easy. Thus,
researchers may ask for the motivation to permit their
work to be integrated in the AMT or to put in even more
effort and integrate it in the AMT by themselves. To
address this issue, the AMT provides a variety of ways to
acknowledge the researcher’s work and display their
contribution.

First, the models are named after the last name of the
first author of the publication describing the model, provid-
ing great visibility to the main author of the model. Second,
the publication describing the model is clearly cited on the
AMT website. This promotes the researcher and the publi-
cation beyond the journal publisher’s common promotion
channels. Further, the publication describing the model is
cited in the AMT in-code documentation, which is visible
in both the AMT online documentation and within the
MATLAB/Octave help system. Last but not least, the
models integrated in the AMT are cited by publications
describing the AMT. This is an important means of scien-
tific recognition, emphasizing the significance of the
researcher’s contribution to a better understanding of the
auditory system.

Not only model developers, but also researchers apply-
ing AMT models in their publications can provide experi-
ments reproducing their results to the AMT. The
contribution of these researchers will be visible by having
their own exp_ function named by their last name and
with a reference to their publication, acknowledging their
effort of contributing to the AMT.

Finally, programmers, who provide a significant
improvement to the AMT code (but neither contribute a
full model nor an experiment) get acknowledged by noting
their names in the sources and the online code repository.
The AMT website lists all AMT contributors so far.

6 Conclusions

The AMT 1.x implements a variety of peripheral and
higher-level auditory models and integrates both publica-
tion-specific and general datasets. Its most recent version
is available (with all the required third-party toolboxes)
from SourceForge28 as a free and open-source software
package for MATLAB and Octave. Most of the AMT’s
models and data are well-documented and verified, as
reflected in the model status of the AMT’s documentation
web page29. The models are accompanied by “demonstra-
tions” providing a simple access to a model’s implementa-
tion and “experiments” aiming at reproducing the models
published output. An online data repository helps to keep
the AMT compact, while still having access to all data
required to reproduce each model’s output. The open-
source code repository combined with a comprehensive

28 https://sourceforge.net/projects/amtoolbox.
29 http://amtoolbox.org/.

P. Majdak et al.: Acta Acustica 2022, 6, 19 13

https://sourceforge.net/projects/amtoolbox
http://amtoolbox.org/


documentation system, multi-licensing, and contribution
reward aims at helping others to contribute to the AMT
at a low entry threshold.

With the release of AMT 1.1, the AMT has matured to
a collection of over 60 auditory models. It now includes new
models such as those based on Bayesian inference, statisti-
cal signal processing, and on speech intelligibility predic-
tions. By integrating comprehensive monaural processing
stages with models of binaural and spatial hearing, the
AMT paves the road towards more complex cognitive
auditory models. Researchers from the auditory cognitive
sciences are invited to pick them up and extend them
towards more encompassing models of auditory or multi-
modal cognition.

Conflict of interest

The authors declare that they have no conflict of
interest.

Acknowledgments

We would like to thank Peter Søndergaard for initiat-
ing the AMT as a project for facilitating reproducible
research by collecting auditory models and making them
available in a common framework. The AMT is the
umbrella project of the group “Aural Assessment By
means of Binaural Algorithms” (AABBA), which is an
intellectual group of scientists collaborating on the devel-
opment and applications of models of human spatial hear-
ing. We thank Jens Blauert for the initiative to create
AABBA and we thank all AABBA members for their
long-standing support. AABBA is the driving force
behind the development of the AMT. Finally, the AMT
would not be that comprehensive without the many con-
tributions from various researchers from the auditory
community. We are wholeheartedly grateful to all the
contributors. This work was supported by the European
Union (EU) within the project SONICOM (grant number:
101017743, RIA action of Horizon 2020) and by the
Austrian Science Fund (FWF) within the project Dyna-
mates (grant number: ZK66).

Data availability statement

This article describes computer code of the Auditory
Modeling Toolbox (AMT) version 1.1.0. Because the
AMT 1.x is continuously being updated, we encourage
to use the most recent release of the AMT 1.x available
at https://sf.net/projects/amtoolbox/files/AMT%201.x/
[100]. The source code of all AMT 1.x versions can be found
at https://sf.net/p/amtoolbox/code/ci/AMT_1.x/tree/.

The documentation of all AMT versions can be found at
http://amtoolbox.org/doc.php [101]. The general AMT
landing page containing all AMT-related information is
located at http://amtoolbox.org/ [102].

References

1.R. Frigg, S. Hartmann: Models in Science, in: E.N. Zalta
(Ed.), The Stanford Encyclopedia of Philosophy, Fall, 2012.

2. R. Meddis, E. Lopez-Poveda, R.R. Fay, A.N. Popper (Eds.):
Computational Models of the Auditory System, Springer,
US, 2010. https://doi.org/10.1007/978-1-4419-5934-8.

3. B.R. Jasny, G. Chin, L. Chong, S. Vignieri: Again, and
again, and again . . .. Science 334, 6060 (2011) 1225.
https://doi.org/10.1126/science.334.6060.1225.

4. P. Vandewalle, J. Kovacević, M. Vetterli: Reproducible
research in signal processing: What, why, and how. IEEE
Signal Processing Magazine 26, 3 (2009) 37–47. https://doi.
org/10.1109/MSP.2009.932122.

5. T. Dau, B. Kollmeier, A. Kohlrausch: Modeling auditory
processing of amplitude modulation. I. Detection and
masking with narrow-band carriers. Journal of the Acous-
tical Society of America 102, 5 (1997) 2892–2905.

6. S. Ewert, T. Dau: Characterizing frequency selectivity for
envelope fluctuations. Journal of the Acoustical Society of
America 108 (2000) 1181–1196. https://doi.org/10.1121/
1.1288665.

7. S. Jørgensen, S.D. Ewert, T. Dau: A multi-resolution
envelope-power based model for speech intelligibility.
Journal of the Acoustical Society of America 134, 1 (2013)
436–446. https://doi.org/10.1121/1.4807563.

8.M. Schwab, N. Karrenbach, J. Claerbout: Making scientific
computations reproducible. Computing in Science & Engi-
neering 2, 6 (Nov. 2000) 61–67. https://doi.org/10.1109/
5992.881708.

9. J.P. Mesirov, Accessible Reproducible Research, Science
327, 5964 (2010) 415–416. https://doi.org/10.1126/science.
1179653.

10. R.D. Peng, Reproducible research in computational science,
Science 334, 6060 (2011) 1226–1227. https://doi.org/
10.1126/science.1213847.

11. J.F. Claerbout, M. Karrenbach: Electronic documents give
reproducible research a new meaning, in: SEG Technical
Program Expanded Abstracts 1992, Society of Exploration
Geophysicists. 1992, pp. 601–604. https://doi.org/10.1190/
1.1822162.

12. B.E. Peterson, M.D. Healy, P.M. Nadkarni, P.L. Miller, G.
M. Shepherd: ModelDB: an environment for running and
storing computational models and their results applied to
neuroscience. Journal of the American Medical Informatics
Association: JAMIA 3, 6 (1996) 389–398. https://doi.org/
10.1136/jamia.1996.97084512.

13. T.M. Morse: Model sharing in computational neuroscience.
Scholarpedia 2, 4 (2007) 3036. https://doi.org/10.4249/
scholarpedia.3036.

14. R. Lyon: Cascades of two-pole–two-zero asymmetric res-
onators are good models of peripheral auditory function.
Journal of the Acoustical Society of America 130 (2011)
3893–3904. https://doi.org/10.1121/1.3658470.

15. L.H. Carney, T. Li, J.M. McDonough: Speech coding in the
brain: representation of vowel formants by midbrain neu-
rons tuned to sound fluctuations. eNeuro 2, 4 (2015).
https://doi.org/10.1523/ENEURO.0004-15.2015.

16. S. Verhulst, A. Altoè, V. Vasilkov: Computational modeling
of the human auditory periphery: Auditory-nerve responses,
evoked potentials and hearing loss. Hearing Research 360
(2018) 55–75. https://doi.org/10.1016/j.heares.2017.12.018.

17. I.C. Bruce, Y. Erfani, M.S.A. Zilany: A phenomenological
model of the synapse between the inner hair cell and
auditory nerve: Implications of limited neurotransmitter
release sites. Hearing Research 360 (2018) 40–54.
https://doi.org/10.1016/j.heares.2017.12.016.

P. Majdak et al.: Acta Acustica 2022, 6, 1914

https://sf.net/projects/amtoolbox/files/AMT%201.x/
https://sf.net/p/amtoolbox/code/ci/AMT_1.x/tree/
http://amtoolbox.org/doc.php
http://amtoolbox.org/
https://doi.org/10.1007/978-1-4419-5934-8
https://doi.org/10.1126/science.334.6060.1225
https://doi.org/10.1109/MSP.2009.932122
https://doi.org/10.1109/MSP.2009.932122
https://doi.org/10.1121/1.1288665
https://doi.org/10.1121/1.1288665
https://doi.org/10.1121/1.4807563
https://doi.org/10.1109/5992.881708
https://doi.org/10.1109/5992.881708
https://doi.org/10.1126/science.1179653
https://doi.org/10.1126/science.1179653
https://doi.org/10.1126/science.1213847
https://doi.org/10.1126/science.1213847
https://doi.org/10.1190/1.1822162
https://doi.org/10.1190/1.1822162
https://doi.org/10.1136/jamia.1996.97084512
https://doi.org/10.1136/jamia.1996.97084512
https://doi.org/10.4249/scholarpedia.3036
https://doi.org/10.4249/scholarpedia.3036
https://doi.org/10.1121/1.3658470
https://doi.org/10.1523/ENEURO.0004-15.2015
https://doi.org/10.1016/j.heares.2017.12.018
https://doi.org/10.1016/j.heares.2017.12.016


18. P. Ru: Multiscale Multirate Spectro-Temporal Auditory
Model. PhD Thesis, University of Maryland College Park,
2001. [Online]. Available: http://nsl.isr.umd.edu/downloads.
html

19. B.C.J. Moore: Development and current status of
the “Cambridge” loudness models. Trends in Hearing 18
(2014) 2331216514550620. https://doi.org/10.1177/
2331216514550620.

20.D.J. Higham, N.J. Higham: MATLAB guide, vol. 150,
Siam.

21. J.W. Eaton, D. Bateman, S. Hauberg: GNU Octave
Manual, Network Theory Ltd.. 2002.

22.Malcolm Slaney: Auditory Toolbox: A MATLAB toolbox for
auditory modeling work, Interval Research Corporation,
Technical Report #1998-010. 1998. Accessed: Mar. 26,
2021. [Online]. Available: https://engineering.purdue.edu/

~malcolm/interval/1998-010/AuditoryToolboxTechReport.
pdf

23. R.D. Patterson, M.H. Allerhand, C. Giguère: Time-domain
modeling of peripheral auditory processing: a modular
architecture and a software platform. Journal of the
Acoustical Society of America 98, 4 (1995) 1890–1894.
https://doi.org/10.1121/1.414456.

24.A. Härmä, K. Palomäki: HUTear – A Free MATLAB
Toolbox for Modeling of Human Auditory System. 1999, pp.
96–99. Accessed: Mar. 26, 2021. [Online]. Available: http://
legacy.spa.aalto.fi/software/HUTear/.

25.D.C. Mountain, D.A. Anderson, G.J. Bresnahan, S.G.
Deligeorges, A.E. Hubbard, V. Vajda: EarLab: A modular
approach to auditory simulation. Journal of Biomechanics
39 (2006) S434. https://doi.org/10.1016/S0021-9290(06)
84771-8.

26.M. Rudnicki, O. Schoppe, M. Isik, F. Völk, W. Hemmert:
Modeling auditory coding: from sound to spikes. Cell and
Tissue Research 361, 1 (2015) 159–175. https://doi.org/
10.1007/s00441-015-2202-z.

27. L.P. O’Mard: Development System for Auditory Modelling
(DSAM), Centre for the Neural Basis of Hearing (CNBH),
2012. [Online]. Available: http://dsam.org.uk.

28. B. Fontaine, D.F.M. Goodman, V. Benichoux, R. Brette:
Brian hears: Online auditory processing using vectorization
over channels. Frontiers in Neuroinformatics 5 (2011).
https://doi.org/10.3389/fninf.2011.00009.

29.M. Stimberg, R. Brette, D.F. Goodman: Brian 2, an
intuitive and efficient neural simulator. eLife 8 (2019)
e47314. https://doi.org/10.7554/eLife.47314.

30.A. Gutkin: Eidos: an open-source auditory periphery
modeling toolkit and evaluation of cross-lingual phonemic
contrasts, in: Proceedings of the 1st Joint Workshop on
Spoken Language Technologies for Under-resourced lan-
guages (SLTU) and Collaboration and Computing for
Under-Resourced Languages (CCURL), Marseille, France,
May 2020, pp. 9–20. Accessed: Mar. 26, 2021. [Online].
Available: https://www.aclweb.org/anthology/2020.sltu-1.2

31. T. Biberger, H. Schepker, F. Denk, S.D. Ewert: Instrumen-
tal quality predictions and analysis of auditory cues for
algorithms in modern headphone technology. Trends in
Hearing 25 (2021) 23312165211001220. https://doi.org/
10.1177/23312165211001219.

32. Two!Ears Team: Two!Ears Auditory Model 1.5, Zenodo,
2018. https://doi.org/10.5281/zenodo.1458420.

33. P. Søndergaard, P. Majdak: The Auditory Modeling Toolbox.
In: J. Blauert (Ed.), The Technology of Binaural Listening,
Berlin-Heidelberg, Germany: Springer, 2013, pp. 33–56.

34.M. Dietz, S.D. Ewert, V. Hohmann: Auditory model based
direction estimation of concurrent speakers from binaural
signals. Speech Communication 53 (2011) 592–605.

35.H. Ziegelwanger, P. Majdak: Modeling the direction-
continuous time-of-arrival in head-related transfer func-
tions. Journal of the Acoustical Society of America 135, 3
(2014) 1278–1293. https://doi.org/10.1121/1.4863196.

36. E.A. Lopez-Poveda, R. Meddis: A human nonlinear
cochlear filterbank. Journal of the Acoustical Society of
America 110, 6 (2001) 3107–3118. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/11785812.

37.V. Hohmann: Frequency analysis and synthesis using a
Gammatone filterbank. Acta Acustica united with Acustica
88, 3 (2002) 433–442.

38. S. Verhulst, T. Dau, C. Shera: Nonlinear time-domain
cochlear model for transient stimulation and human otoa-
coustic emission. Journal of the Acoustical Society of
America 132 (2012) 3842–3848.

39.M.S.A. Zilany, I.C. Bruce: Representation of the vowel e in
normal and impaired auditory nerve fibers: Model predic-
tions of responses in cats. Journal of the Acoustical Society
of America 122 (2007) 402–417.

40.M.S.A. Zilany, I.C. Bruce, L.H. Carney: Updated parame-
ters and expanded simulation options for a model of the
auditory periphery. Journal of the Acoustical Society of
America 135, 1 (2014) 283–286. https://doi.org/10.1121/
1.4837815.

41. T. Dau, D. Püschel, A. Kohlrausch: A quantitative model of
the “effective” signal processing in the auditory system. I.
Model structure. Journal of the Acoustical Society of
America 99, 6 (1996) 3615–3622. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/8655793.

42. J. Breebaart, S. van de Par, A. Kohlrausch: Binaural
processing model based on contralateral inhibition. III.
Dependence on temporal parameters. Journal of the
Acoustical Society of America 110, 2 (2001) 1105–1117.
[Online]. Available: http://www.ncbi.nih.gov/entrez/query.
fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=
11519578

43.H. Relaño-Iborra, J. Zaar, T. Dau: A speech-based compu-
tational auditory signal processing and perception model.
Journal of the Acoustical Society of America 146, 5 (2019)
3306–3317. https://doi.org/10.1121/1.5129114.

44.M.L. Jepsen, S.D. Ewert, T. Dau: A computational model of
human auditory signal processing and perception. Journal
of the Acoustical Society of America 124, 1 (2008) 422–438.
[Online]. Available: http://view.ncbi.nlm.nih.gov/pubmed/
18646987.

45.N.F. Viemeister: Temporal modulation transfer functions
based upon modulation thresholds. Journal of the Acous-
tical Society of America 66, 5 (1979) 1364–1380.
https://doi.org/10.1121/1.383531.

46. F.M. Rønne, T. Dau, J. Harte, C. Elberling: Modeling
auditory evoked brainstem responses to transient stimuli.
Journal of the Acoustical Society of America 131, 5 (2012)
3903–3913. https://doi.org/10.1121/1.3699171.

47. S. Verhulst, H.M. Bharadwaj, G. Mehraei, C.A. Shera, B.G.
Shinn-Cunningham: Functional modeling of the human
auditory brainstem response to broadband stimulation.
Journal of the Acoustical Society of America 138, 3 (2015)
1637–1659. https://doi.org/10.1121/1.4928305.

48.A. King, L. Varnet, C. Lorenzi: Accounting for masking of
frequency modulation by amplitude modulation with the
modulation filter-bank concept. Journal of the Acoustical
Society of America 145, 4 (2019) 2277–2293.

49.W. Lindemann: Extension of a binaural cross-correlation
model by contralateral inhibition. I. Simulation of lateral-
ization for stationary signals. Journal of the Acoustical
Society of America 80, 6 (1986) 1608–1622. https://doi.org/
10.1121/1.394325.

P. Majdak et al.: Acta Acustica 2022, 6, 19 15

http://nsl.isr.umd.edu/downloads.html
http://nsl.isr.umd.edu/downloads.html
https://doi.org/10.1177/2331216514550620
https://doi.org/10.1177/2331216514550620
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://doi.org/10.1121/1.414456
http://legacy.spa.aalto.fi/software/HUTear/
http://legacy.spa.aalto.fi/software/HUTear/
https://doi.org/10.1016/S0021-9290(06)84771-8
https://doi.org/10.1016/S0021-9290(06)84771-8
https://doi.org/10.1007/s00441-015-2202-z
https://doi.org/10.1007/s00441-015-2202-z
http://dsam.org.uk
https://doi.org/10.3389/fninf.2011.00009
https://doi.org/10.7554/eLife.47314
https://www.aclweb.org/anthology/2020.sltu-1.2
https://doi.org/10.1177/23312165211001219
https://doi.org/10.1177/23312165211001219
https://doi.org/10.5281/zenodo.1458420
https://doi.org/10.1121/1.4863196
http://view.ncbi.nlm.nih.gov/pubmed/11785812
https://doi.org/10.1121/1.4837815
https://doi.org/10.1121/1.4837815
http://view.ncbi.nlm.nih.gov/pubmed/8655793
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=11519578
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=11519578
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=11519578
https://doi.org/10.1121/1.5129114
http://view.ncbi.nlm.nih.gov/pubmed/18646987
http://view.ncbi.nlm.nih.gov/pubmed/18646987
https://doi.org/10.1121/1.383531
https://doi.org/10.1121/1.3699171
https://doi.org/10.1121/1.4928305
https://doi.org/10.1121/1.394325
https://doi.org/10.1121/1.394325


50.M. Takanen, O. Santala, V. Pulkki: Binaural assessment of
parametrically coded spatial audio signals. In: J. Blauert
(Ed.), The technology of binaural listening, Berlin,
Germany: Springer. 2013, pp. 333–358.

51. B.C.J. Moore, B.R. Glasberg, T. Baer: A model for the
prediction of thresholds, loudness, and partial loudness.
Journal of the Audio Engineering Society 45, 4 (1997) 224–
240. [Online]. Available: http://www.aes.org/e-lib/browse.
cfm?elib=10272

52. B.R. Glasberg, B.C.J. Moore: A model of loudness applica-
ble to time-varying sounds. Journal of the Audio Engineer-
ing Society 50, 5 (2002) 331–342. [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=11081

53. Z. Chen, G. Hu, B.R. Glasberg, B.C.J. Moore: A new
model for calculating auditory excitation patterns and
loudness for cases of cochlear hearing loss. Hearing Research
282, 1 (2011) 69–80. https://doi.org/10.1016/j.heares.2011.
09.007.

54. B.C.J. Moore, B.R. Glasberg, A. Varathanathan, J.
Schlittenlacher: A loudness model for time-varying sounds
incorporating binaural inhibition. Trends in Hearing 20
(2016). https://doi.org/10.1177/2331216516682698.

55. S. Jørgensen, T. Dau: Predicting speech intelligibility based
on the signal-to-noise envelope power ratio after modula-
tion-frequency selective processing. Journal of the Acousti-
cal Society of America 130, 3 (2011) 1475–1487. https://doi.
org/10.1121/1.3621502.

56. C.H. Taal, R.C. Hendriks, R. Heusdens, J. Jensen: An
algorithm for intelligibility prediction of time-frequency
weighted noisy speech. IEEE Transactions on Audio,
Speech, and Language Processing 19, 7 (2011) 2125–2136.
https://doi.org/10.1109/TASL.2011.2114881.

57. J.F. Culling, M.L. Hawley, R.Y. Litovsky: The role of head-
induced interaural time and level differences in the speech
reception threshold for multiple interfering sound sources.
Journal of the Acoustical Society of America 1162 (2004)
1057–1065. [Online]. Available: http://www.ncbi.nih.gov/
entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=
abstract&list_uids=15376672.

58. S. Jelfs, J.F. Culling, M. Lavandier: Revision and validation
of a binaural model for speech intelligibility in noise.
Hearing Research 275, 1–2 (2011). https://doi.org/
10.1016/j.heares.2010.12.005.

59. T. Leclere, M. Lavandier, J.F. Culling: Speech intelligibility
prediction in reverberation: Towards an integrated model of
speech transmission, spatial unmasking, and binaural de-
reverberation. Journal of the Acoustical Society of America
137, 6 (2015) 3335–3345. https://doi.org/10.1121/
1.4921028.

60. C.F. Hauth, S.C. Berning, B. Kollmeier, T. Brand: Modeling
binaural unmasking of speech using a blind binaural processing
stage. Trends in Hearing 24 (2020) 2331216520975630.
https://doi.org/10.1177/2331216520975630.

61. L. Prud’homme, M. Lavandier, V. Best: A harmonic-
cancellation-based model to predict speech intelligibility
against a harmonic masker. Journal of the Acoustical
Society of America 148, 5 (2020) 3246–3254. https://doi.
org/10.1121/10.0002492.

62. T. Vicente, M. Lavandier: Further validation of a binaural
model predicting speech intelligibility against envelope-
modulated noises. Hearing Research 390 (2020) 107937.
https://doi.org/10.1016/j.heares.2020.107937.

63. T. Vicente, M. Lavandier, J.M. Buchholz: A binaural model
implementing an internal noise to predict the effect of
hearing impairment on speech intelligibility in non-station-
ary noises. Journal of the Acoustical Society of America 148,
5 (2020) 3305–3317. https://doi.org/10.1121/10.0002660.

64.M. Lavandier: A series of speech intelligibility models in the
auditory modeling toolbox. Submitted to Acta Acustica
(2022) .

65.A. Osses Vecchi, A. Kohlrausch: Perceptual similarity
between piano notes: Simulations with a template-based
perception model. Journal of the Acoustical Society of
America 149, 5 (2021) 3534–3552. https://doi.org/10.1121/
10.0004818.

66. P. Lladó, P. Hyvärinen, V. Pulkki: Auditory model-based
estimation of the effect of head-worn devices on frontal
horizontal localisation. Acta Acustica 6 (2022) 1.
https://doi.org/10.1051/aacus/2021056.

67. P. Zakarauskas, M.S. Cynader: A computational theory of
spectral cue localization. Journal of the Acoustical Society
of America 94 (1993) 1323–1331.

68. E.H.A. Langendijk, A.W. Bronkhorst: Contribution of
spectral cues to human sound localization. Journal of the
Acoustical Society of America 112, 4 (2002) 1583–1596.
https://doi.org/10.1121/1.1501901.

69. T. May, S. van de Par, A. Kohlrausch: A probabilistic
model for robust localization based on a binaural auditory
front-end. IEEE Transactions on Audio, Speech, and
Language Processing 19 (2011) 1–13.

70. R. Baumgartner, P. Majdak, L. Bernhard: Assessment of
sagittal-plane sound localization performance in spatial-
audio applications. In: J. Blauert (Ed.), The Technology of
Binaural Listening, Berlin, Heidelberg: Springer. 2013, pp.
93–119.

71. E. Georganti, T. May, S. van de Par, J. Mourjopoulos:
Sound source distance estimation in rooms based on
statistical properties of binaural signals. IEEE Transac-
tions on Audio, Speech, and Language Processing 21, 8
(2013) 1727–1741. https://doi.org/10.1109/TASL.2013.
2260155.

72.H. Wierstorf, A. Raake, S. Spors: Binaural assessment of
multichannel reproduction. In: J. Blauert (Ed.), The Tech-
nology of Binaural Listening, Berlin, Heidelberg: Springer,
Berlin Heidelberg, 2013, pp. 255–278. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37762-4_10.

73. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-
source localization in sagittal planes for human listeners.
Journal of the Acoustical Society of America 136 (2014)
791–802. https://doi.org/10.1121/1.4887447.

74. J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, H. Peremans:
An ideal-observer model of human sound localization.
Biological Cybernetics 1082 (2014) 169–181. https://doi.
org/10.1007/s00422-014-0588-4.

75.D. Kelvasa, M. Dietz: Auditory model-based sound
direction estimation with bilateral cochlear implants.
Trends in Hearing 19 (2015). https://doi.org/10.1177/
2331216515616378.

76. R. Baumgartner, P. Majdak, B. Laback: Modeling the effects
of sensorineural hearing loss on sound localization in the
median plane. Trends in Hearing 20 (2016) 2331216516662003.
https://doi.org/10.1177/2331216516662003.

77.H.G. Hassager, F. Gran, T. Dau: The role of spectral detail
in the binaural transfer function on perceived externaliza-
tion in a reverberant environment. Journal of the Acoustical
Society of America 139, 5 (2016) 2992–3000. https://doi.
org/10.1121/1.4950847.

78. R. Baumgartner, D.K. Reed, B. Tóth, V. Best, P. Majdak,
H.S. Colburn, B. Shinn-Cunningham: Asymmetries in
behavioral and neural responses to spectral cues demon-
strate the generality of auditory looming bias. Proceedings
of the National Academy of Sciences of the United States of
America 114, 36 (2017) 9743–9748. https://doi.org/
10.1073/pnas.1703247114.

P. Majdak et al.: Acta Acustica 2022, 6, 1916

http://www.aes.org/e-lib/browse.cfm?elib=10272
http://www.aes.org/e-lib/browse.cfm?elib=10272
http://www.aes.org/e-lib/browse.cfm?elib=11081
https://doi.org/10.1016/j.heares.2011.09.007
https://doi.org/10.1016/j.heares.2011.09.007
https://doi.org/10.1177/2331216516682698
https://doi.org/10.1121/1.3621502
https://doi.org/10.1121/1.3621502
https://doi.org/10.1109/TASL.2011.2114881
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=15376672
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=15376672
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=15376672
https://doi.org/10.1016/j.heares.2010.12.005
https://doi.org/10.1016/j.heares.2010.12.005
https://doi.org/10.1121/1.4921028
https://doi.org/10.1121/1.4921028
https://doi.org/10.1177/2331216520975630
https://doi.org/10.1121/10.0002492
https://doi.org/10.1121/10.0002492
https://doi.org/10.1016/j.heares.2020.107937
https://doi.org/10.1121/10.0002660
https://doi.org/10.1121/10.0004818
https://doi.org/10.1121/10.0004818
https://doi.org/10.1051/aacus/2021056
https://doi.org/10.1121/1.1501901
https://doi.org/10.1109/TASL.2013.2260155
https://doi.org/10.1109/TASL.2013.2260155
http://dx.doi.org/10.1007/978-3-642-37762-4_10
https://doi.org/10.1121/1.4887447
https://doi.org/10.1007/s00422-014-0588-4
https://doi.org/10.1007/s00422-014-0588-4
https://doi.org/10.1177/2331216515616378
https://doi.org/10.1177/2331216515616378
https://doi.org/10.1177/2331216516662003
https://doi.org/10.1121/1.4950847
https://doi.org/10.1121/1.4950847
https://doi.org/10.1073/pnas.1703247114
https://doi.org/10.1073/pnas.1703247114


79. S. Li, R. Baumgartner, J. Peissig: Modeling perceived
externalization of a static, lateral sound image. Acta Acustica
4, 5 (2020) 5. https://doi.org/10.1051/aacus/2020020.

80. Robert Baumgartner, Piotr Majdak: Decision making in
auditory externalization perception: model predictions for
static conditions. Acta Acustica 5 (2021) 59. https://doi.
org/10.1051/aacus/2021053.

81. R. Barumerli, P. Majdak, R. Baumgartner, M. Geronazzo,
F. Avenzini: Predicting human spherical sound-source
localization based on Bayesian inference. Submitted to
Acta Acustica (2022).

82.G. McLachlan, P. Majdak, J. Reijniers, H. Peremans:
Towards modelling active sound localisation based on
Bayesian inference in a static environment. Acta Acustica
5 (2021) 45. https://doi.org/10.1051/aacus/2021039.

83. R. Baumgartner, P. Majdak: Modeling localization of
amplitude-panned virtual sources in sagittal planes. Journal
of the Audio Engineering Society 63, 7/8 (2015) 562–569.
https://doi.org/10.17743/jaes.2015.0063.

84. R. Baumgartner, P. Majdak, B. Laback: The reliability of
contralateral spectral cues for sound localization in sagittal
planes, in: Presented at the Midwinter Meeting of the
Association for Research in Otolaryngology, Baltimore, MD,
USA, 2015.

85. J. Engel Alonso Martinez, D. Goodman, L. Picinali:
Assessing HRTF preprocessing methods for Ambisonics
rendering through perceptual models. Acta Acustica 6
(2022) 4. https://doi.org/10.1051/aacus/2021055.

86.A.O. Vecchi, L. Varnet, L.H. Carney, T. Dau, I.C. Bruce, S.
Verhulst, P. Majdak: A comparative study of eight human
auditory models of monaural processing. Submitted to Acta
Acustica (2022) https://doi.org/10.1051/aacus/2022008.

87. S. Röttges, C.F. Hauth, T. Brand, J. Rennies-Hochmuth:
Challenging a non-intrusive EC-mechanism: Modelling the
Interaction between binaural and temporal speech process-
ing. Submitted to Acta Acustica (2022).

88. L. Steidle, R. Baumgartner, Geometrical evaluation of
methods to approximate interaural time differences by
broadband delays, in: Fortschritte der Akustik, Rostock.
2019, 368–370.

89.W.M. Hartmann, A. Wittenberg: On the externalization of
sound images. Journal of the Acoustical Society of America
99, 6 (1996) 3678–3688. [Online]. Available: http://www.
ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&
dopt= abstract&list_uids=8655799.

90. J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring: GNU
Octave version 6.1.0 manual: a high-level interactive language

for numerica l computations (2020). [Online]. Available:
http://www.gnu.org/software/octave/doc/interpreter.

91. S.D. Ewert: AFC – A modular framework for running
psychoacoustic experiments and computational perception
models, in: Proceedings of the International Conference on
Acoustics AIA-DAGA, Merano, Italy, 2013, pp. 1326–1329.

92.M. Dietz, J.H. Lestang, P. Majdak, R.M. Stern, T.
Marquardt, S.D. Ewert, W.M. Hartmann, D.F. Goodman:
A framework for testing and comparing binaural models.
Hearing Research 360 (2018) 92–106. https://doi.org/
10.1016/j.heares.2017.11.010.

93. Z. Průša, P.L. Søndergaard, N. Holighaus, C. Wiesmeyr, P.
Balazs: The large time-frequency analysis toolbox 2.0, in:
Sound Music, and Motion, Cham, 2014, pp. 419–442.
https://doi.org/10.1007/978-3-319-12976-1_25.

94. P. Majdak, Y. Iwaya, T. Carpentier, R. Nicol, M.
Parmentier, A. Roginska, Y. Suzuki, K. Watanabe, H.
Wierstorf, H. Ziegelwanger, M. Noisternig: Spatially ori-
ented format for acoustics: a data exchange format repre-
senting head-related transfer functions, in: Proceedings of
the 134th Convention of the Audio Engineering Society
(AES), Roma, Italy, 2013, Convention Paper 8880.

95. P. Majdak, M.J. Goupell, B. Laback: 3-D localization of
virtual sound sources: effects of visual environment, point-
ing method, and training. Attention, Perception, & Psy-
chophysics 72, 2 (2010) 454–469. https://doi.org/10.3758/
APP.72.2.454.

96.H. Møller, M.F. Sørensen, D. Hammershøi, C.B. Jensen:
Head-related transfer functions of human subjects. Journal
of the Audio Engineering Society 43 (1995) 300–321.

97. L.R. Bernstein, S. van de Par, C. Trahiotis: The normalized
interaural correlation: Accounting for NoSp thresholds
obtained with Gaussian and \”low-noise\” masking noise.
Journal of the Acoustical Society of America 106 (1999)
870.

98. S. Chacon, B. Straub: Pro git. 2nd ed., Apress, 2014.
99.N. Barnes: Publish your computer code: it is good enough.

Nature 467, 7317 (2010) 753. https://doi.org/10.1038/
467753a.

100. The AMT Team: The Auditory Modeling Toolbox 1.x Full
Packages. https://sourceforge.net/projects/amtoolbox/files/
AMT%201.x/amtoolbox-full-1.0.0.zip/download (accessed
Mar. 17, 2022).

101. The AMT Team: Documentation of the Auditory Modeling
Toolbox (AMT). http://amtoolbox.org/doc.php (accessed
Mar. 17, 2022).

102. The AMT Team: The Auditory Modeling Toolbox (AMT).
http://amtoolbox.org/ (accessed Mar. 17, 2022).

Cite this article as: Majdak P. Hollomey C. & Baumgartner R. 2022. AMT 1.x: A toolbox for reproducible research in auditory
modeling. Acta Acustica, 6, 19.

P. Majdak et al.: Acta Acustica 2022, 6, 19 17

https://doi.org/10.1051/aacus/2020020
https://doi.org/10.1051/aacus/2021053
https://doi.org/10.1051/aacus/2021053
https://doi.org/10.1051/aacus/2021039
https://doi.org/10.17743/jaes.2015.0063
https://doi.org/10.1051/aacus/2021055
https://doi.org/10.1051/aacus/2022008
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=8655799
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=8655799
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=8655799
http://www.gnu.org/software/octave/doc/interpreter
https://doi.org/10.1016/j.heares.2017.11.010
https://doi.org/10.1016/j.heares.2017.11.010
https://doi.org/10.1007/978-3-319-12976-1_25
https://doi.org/10.3758/APP.72.2.454
https://doi.org/10.3758/APP.72.2.454
https://doi.org/10.1038/467753a
https://doi.org/10.1038/467753a
https://sourceforge.net/projects/amtoolbox/files/AMT%201.x/amtoolbox-full-1.0.0.zip/download
https://sourceforge.net/projects/amtoolbox/files/AMT%201.x/amtoolbox-full-1.0.0.zip/download
http://amtoolbox.org/doc.php
http://amtoolbox.org/

	Introduction
	Models
	Models and their stages
	2.1.1 Outer and middle ear
	2.1.2 Basilar membrane and hair cells
	2.1.3 Auditory nerve
	2.1.4 Brainstem
	2.1.5 Perception and behavior

	Demonstrations and experiments
	Model-dependent plotting and signal generation
	Model status

	Environment
	Core functions
	Dependencies and third-party toolboxes
	Cache
	Data functions and auxiliary data
	Common functions

	Getting started with the AMT
	Contributing to the AMT
	Coding
	5.1.1 Environment
	5.1.2 Directory structure
	5.1.3 Function and file names
	5.1.4 Variable names and default parameters
	5.1.5 Signal levels

	Documentation
	Licensing
	Acknowledging researchers for their contribution

	Conclusions
	Conflict of interest
	Acknowledgements
	Data availability statement
	References

